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DESIGNING PLANAR MECHANISMS USING

Abstract

In this paper we present a technique for using a
bi-invariant metric in the image space of spherical
displacements for designing planar mechanisms for
n(> 5) position rigid body guidance. The goal is
to perform the dimensional synthesis of the mecha-
nism such that the distance between the position and
orientation of the guided body to each of the n goal
positions is minimized. Rather than measure these
distances in the plane, we introduce an approximat-
ing sphere and identify rotations which are equivalent
to the planar displacements to a specified tolerance.
We then measure distances between the rigid body
and the goal positions using a bi-invariant metric on
the image space of SO(3). The optimal linkage is ob-
tained by minimizing this distance over all of the n
goal positions.

The paper proceeds as follows. First, we approxi-
mate planar rigid body displacements with spherical
displacements and show that the error induced by
such an approximation is of order 7z, where R is the
radius of the approximating sphere. Second, we use
a bi-invariant metric in the image space of spherical
displacements to synthesize an optimal spherical 4R
mechanism. Finally, we identify the planar 4R mech-
anism associated with the optimal spherical solution.
The result is a planar 4R mechanism that has been
optimized for n position rigid body guidance using
an approximate bi-invariant metric with an error de-
pendent only upon the radius of the approximating
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sphere. Numerical results for ten position synthesis
of a planar 4R mechanism are presented.

1 Introduction

The notion of a metric for measuring distances be-
tween two points in a plane, or two points in space, is
quite intuitive. However, a metric that measures the
distance between finite positions of a rigid body (its
location and orientation) in general planar or spatial
motion is not. Furthermore, as has been stated by
several researchers in the field, there is no bi-invariant
metric for planar and spatial motions, see Kazerou-
nian and Rastegar 1992, and Duffy 1990. That is to
say, there is no distance measure which is indepen-
dent of the choice of coordinate system in both the
fixed and moving bodies. This distance measure is
used to define the goal of our design procedure; it is
undesirable to have this goal vary with the choice of
coordinates. Therefore, we chose to approximate pla-
nar displacements by spherical displacements and use
a well known bi-invariant metric in the image space
of spherical displacements to design planar 4R mech-
anisms.

Approximate planar motion synthesis, or n posi-
tion synthesis, in the plane has been studied by Sark-
isyan, Gupta and Roth 1973, Gupta and Roth 1975,
Suh and Radcliffe 1978, Ravani and Roth 1983, and
others. These previous works have involved either
the use of metrics which are not bi-invariant, or, have
avoided the use of a metric in their procedure which




results in: (1) optimization problems which are dif-
ficult to solve, and, (2) no measure of how well the
resulting linkage meets the design objective of guiding
a body through n positions. Our approach involves
identifying positions on a sphere which approximate
the n desired positions in the plane. We then syn-
thesize an optimal spherical 4R mechanism, using a
bi-invariant metric, for the spherical positions. Fi-
nally, we identify the optimal planar 4R mechanism
from the spherical solution. The result is a planar
4R mechanism which has been optimized for n po-
sition rigid body guidance using an approximate bi-
invariant metric whose error is dependent only upon
the radius of the approximating sphere.

2 The Image Space of Spheri-
cal Displacements

First, we review spherical displacements and their
representation in the image space. Spherical displace-
ments are a special subset of general spatial displace-
ments in that spherical displacements are pure rota-
tions. Spherical displacements may be represented by
a 3 x 3 orthonormal rotation matrix which describes
the orientation of the moving frame relative to the
fixed frame. Associated with the matrix of rotation
[A] is an axis of rotation s, and a rotation angle about
that axis §, which can be recovered from [4] as fol-
lows,
a11 +azp+aszz—1

6 = arccos 5 (1)

@32 — G23
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2sinf
az1 — a1z
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Using the rotation axis s and the angle of rotation

0 we can represent a spherical displacement by the
four dimensional vector q, see Hamilton 1969, which
we denote as a quaternion. The four coordinates of
the quaternion, sometimes referred to as Euler pa-
rameters, are,
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@ = spsing (2)
= sing
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g3 = §; 2
= cosg
qqs = 3
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Note that the components of the quaternion q satisfy
the relation,

Gi(@) : d+d+d+d-1=0 (3

and lie on a unit hypersphere which we denote as the
image space of spherical displacements.

3 Approximating Planar Dis-
placements

We now examine how spherical displacements may
be used to approximate planar displacements with
some finite error associated with the radius R of the
sphere. The approach used here is similar to the work
of McCarthy 1983 and 1986 in which he examined
spherical and 3-spherical motions with instantaneous
invariants approaching zero and showed that these
motions may be identified with planar and spatial
motions, respectively.

First, recall that a general planar displacement,
(a,b,%), in the z = R plane may be described by
the coordinate transformation,

X T
Y = [Ap] y ()
z | 1
where,
[ cosy —sing a
[4,] = siny cosy b (5)
| 0 0 R

Now consider a general spherical displacement in
which the parameters used to describe the displace-
ment are the three angles 8, ¢, and ¥ as defined in
Fig. 1. We refer to 8 as the longitude, to ¢ as the lat-
itude, and to % as the roll of the position. With this
choice of parameters, a general spherical displacement
is described by equation,

X z
Y| = [A]l|y (6)
yA z

where,
[As] = Rot(y,0)Rot(z,~¢)Rot(z,¥) (7)
Performing the matrix multiplications yields,
[4s] =
clcyp — ssgstp  —clsp — slsgcy  slco

clsy copey s¢
—sfe — clspsy  sOsth — cBsgey  cled

(8)




where cf = cos 8 and s = sin#f.

‘We now define @ as the longitudinal arc length and
b as the latitudinal arc length so that, @ = Rf and
b = R¢. Solving for the angles we obtain,

0 =

¢ = (9)

| ool &

‘We now expand the trigonometric functions sine and
cosine using a Taylor series about 0,

1
Sin(z) = Z— ;‘33-{-—25—-...
1,14
cos(z) = 1—'273 +Ez —_— (10)

Substituting the angles # and ¢ from Eq. 9 into the
expansions Eqs. 10 we are able to rewrite Eq. § as,

bl
0 1 _
0 0
= 0 0
R —acyp — bsyp  asyp — beyp —--% (&—2}?_‘—”:)
1
+0(-1—2—2-) (11)

Now, if we consider only the displacement of points
p in the z = R plane, p = [2,9, R]Y we may we
rewrite Eq. 6 using Eq. 11 as,

i)

- We note that the first term of Eq. 12 is identical to
the equation for general planar displacements, Eq. 4.
_ Moreover, in the limit as £ — 0 and (&5, x, y) re-

Iain ﬁmte, spherical and planar motion are identi-
_cal. Furthermore, we note, to the first order that the
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1
+0(3) (12)

Figure 1: A Spherical Displacement

spherical motion differs from the motion in the z = R
plane only in the z direction.

From our derivation and analysis of Eq. 12 we con-
clude that spherical displacements may be used to ap-
proximate planar displacements with some finite er-
ror which is associated with the radius of the sphere.
The procedure used to approximate a planar displace-
ment, (a,b,d), with a displacement on a sphere of
radius R is as follows. Examining the first term of
Eq. 12 we make the following identifications,

I

a
b

] (13)
Finally, using the definition of the arc lengths, Eq. 9,
and the radius of the sphere we obtain the three an-
gles; 0, ¢, and 1, which describe the spherical dis-
placement on the sphere of radius R that approxi-
mates the prescribed planar motion.
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4 The Metric

The metric in the image space that we use was pro-
posed by Ravani and Roth 1983,1984 for synthesiz-
ing planar, spherical and spatial mechanisms for rigid




body guidance. Each position of a rigid body maps to
a corresponding point in the image space. McCarthy
1990 shows that if the displacement is a general spa-
tial one, the mapping is to the image space of spatial
displacements. If the displacement is planar, to the
image space of planar displacements, and spherical
displacements map to the image space of spherical
displacements. Let the two image points of a rigid
body displacement be denoted by q; and q,. The
measure d of the distance between the two positions
is defined as follows,

@® = (a1 — q2) - (q1 — qq) (15)

We now consider a different position of the fixed ref-
erence frame described by the image space point qr.
As viewed from the new fixed reference frame the po-
sitions are,

q;. = 4qrq:
9 = qrqe (16)

Next, we compute the distance between the two posi-
tions when referenced to the fixed frame at a general
position qr. By substituting Eq. 16 into Eq. 15 we
arrive at,

@ = (ar - qr){(a1 - ) - (a1 — q2)} (17

For planar and spatial displacements, qp - ar # 1
and the metric is not invariant under a change of
fixed frame coordinate system. However in the im-
age space of spherical displacements we have, from
Eq. 3, that qp -qF = 1 for all qr. Therefore, the dis-
tance obtained in Eq. 17 is identical to that obtained
in Eq. 15 and we conclude that the metric is left in-
variant. Similarly, suppose q: and q2 are measured
with respect to a moving frame. We now examine a
change in the position of the moving frame described
by the image space point qum. As viewed from the
new moving reference frame the positions are,

"

4 = digqm

n

Q@ = qqu (18)

We compute the distance between the two positions
by substituting Eq. 18 into Eq. 15 and arrive at,

@* = {(q1 —q2) - (q1 — @)Ham -an)  (19)

Again, we have that qsm - qum = 1 for all qar and
conclude that the metric, given by Eq. 15, in the im-
age space of spherical displacements is both left and
right invariant, or bi-invariant. That is to say, our
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measure of the distance between two positions in the
image space of spherical displacements is independent
of the choice of coordinate system used. For a more
general and elaborate discussion of metrics and normg
see the chapter on computational kinematics by K.C,
Gupta in Erdman, 1992.

5 The Design Procedure

First, determine the spherical positions which ap-
proximate the n desired positions of the rigid body
by using Eq. 14 and Eq. 8. The next step in the pro-
cedure is to synthesize a spherical mechanism which
guides a rigid body through the spherical positions
which approximate the n desired positions of the
moving body in the plane.

The synthesis procedure used to perform the n po-
sition spherical 4R rigid body guidance problem was
presented by Bodduluri and McCarthy 1992, Boddu-
luri 1990, and Ravani and Roth 1983. The procedure
first approximates the point on the constraint mani-
fold of the mechanism which is closest to the desired
point in the image space. Then, the metric, given by
Eq. 15, is used to measure the distance from this point
on the constraint manifold to the desired point in the
image space. An optimization problem is then formu-
lated to vary the design parameters of the mechanism
such that they minimize this distance for all of the n
desired positions. The result is a spherical 4R mecha-
nism whose design variables have been optimized such
that all of the prescribed positions are either: (1) in
the constraint manifold, or, (2) the constraint man-
ifold has been shaped such that it comes as close as
possible to all of the desired positions. Once the op-
timal spherical mechanism has been been found the
final step of the design process is to obtain the pla-
nar 4R mechanism associated with the spherical 4R
mechanism by using Eq. 14.

6 Case Study

We now present an example of the design of a planar
4R mechanism for n = 10 positions. The 10 desired
positions are listed in Thl. 1. Based upon the coordi-
nates of the desired positions we choose to limit the
design space to a 52 x 52 square; (4x 13 =52). That
is to say we limit the mechanism search space to this
planar area such that the moving and fixed pivots, as
well as the rigid body being guided, are always within
this area. Limiting the angles # and ¢ about the z
axis to; —15 < § < 15 and —15 < ¢ < 15, we now




compute the radius of the approximating sphere,

52

T 30%;

R ~ 100 (20)

The spherical positions which approximate the de-
sired planar positions are found in Tbl. 1. Further-
more, the position error for the optimal spherical 4R
mechanism is also shown in Tbl. 1. The result of the
spherical optimization is the location (longitude and
latitude) of the fixed and moving axes of the spheri-
cal mechanism. Using Eq. 14, we obtain the locations
of the planar axes, listed in Tbl. 2, which are asso-
ciated with the spherical mechanism. Note that the
locations -of the fixed axes are given with respect to
the fixed frame while the locations of the moving axes
are given with respect to the moving reference frame.
The length of the fixed and the coupler links are eas-
ily found by computing the linear distance between
the fixed and moving axes, respectively. To deter-
mine the crank lengths of each dyad we use Eq. 14
to recover the linear distance between the fixed and
moving axes of the planar linkage from the angular
length of the corresponding spherical crank. The four
link lengths of the mechanism are listed in Tbl. 4.
In order verify the design we use an approach pre-
sented by Suh and Radcliffe 1978 which utilizes the
crank constraint equation for a planar RR dyad. We
substitute the fixed and moving axes of the mech-
anism into the crank constraint equation and solve
for the crank length. If the mechanism passes ex-
actly through all of the positions then the crank
length should remain constant. The results of the
verification are presented in Tbl. 3 which lists the
standard deviation of the 10 crank lengths obtained
from the crank constraint equation. For the sake of
comparison we include the results of the verification
of the solution presented by Ravani and Roth 1983
to the same 10 positions using the metric given by
Eq. 15 in the image space of planar displacements;
which you may recall is not bi-invariant. The link
lengths of the planar synthesis solution are listed in
Thl. 5. Next we plot the ten desired positions and
the coupler curves for both the spherical approxima-
tion solution(solid) and the planar approximation so-
lution(dotted) in Fig. 2. From Fig. 2 it is clear that
all of the positions are on one branch of the planar
synthesis solution though in Fig. 2 it appears that
position 3 is on the second branch of the spherical
approximation solution. However, that is not the
case. The second branch coupler curve happens to
pass through the origin of position 3 however the ori-
entation error here is large. For position 3, while for
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Link Fixed Moving
X | Y X |Y
DRIVING | 13.98 | —2.53 | 10.23 | —4.66
DRIVEN | 6.57 | 1.12 | 2.66 | —7.84

Table 2: Mechanism Joint Locations

Link Length Standard Deviation
Sph. Approx. || Planar Syn.
DRIVING 0.560 0.157
DRIVEN 0.288 0.739
S = 08481 || 5 = 0.8950

Table 3: Mechanism Verification

the first branch the position error is larger than that
for the second branch, the orientation error is much
smaller. The approximation to position 3 is on the
first branch with the other 9 positions. This confu-
sion arises due to the fact that the orientation of the
body is not represented by the coupler curves.

We now illustrate the approximate bi-invariance
of our approach by translating the positions —5.0 in
both the z and y directions while maintaining their
orientations and examine the results obtained for
both the planar synthesis method and the spherical
approximation method. Using the spherical approx-
imation approach we yield a solution to the trans-
lated positions which is nearly identical to the pre-
viously determined solution of the untranslated po-
sition problem. For the spherical approximation ap-
proach, the link lengths for both the original solution
and the solution to the translated positions are listed
in in Tbl. 4. Using the planar synthesis technique of
Ravani and Roth we yield the mechanism with link
lengths listed in Tbl. 5. We note that the link lengths
have changed for the planar synthesis approach but
that the link lengths obtained by using the spherical
approximation approach are nearly identical to those
found for the original choice of coordinates. For visual
comparison, in Fig. 3 we plot the coupler curves to
the spherical approximation solution(solid) and the
planar synthesis solution(dotted). Note that the cou-
pler curve for the spherical approximation is the same
in both Fig. 2 and in Fig. 3 while the curve for the
planar synthesis solution is not.
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Figure 2: Ravani and Roth’s 10 positions with solutions using planar syn.(dotted) and sph. approx.(solid).
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Figure 3: The same 10 positions translated (—5, —5) with solutions using planar syn. and sph. approx.




[Pos.| a | b | ¢ | Long. [ Lat. | Roll Error |

1 0.0 | 0.0 | 40.0 0.000 | 0.000 | 40.000 107E-5
2 4.5 | 4.0 | 20.0 2.5678 | 2.291 | 20.000 3.36E—5
3 85 | 8.0 0.0 4.870 | 4.583 | 0.000 1.93E-5
4 13.0 | 11.5 | —30.0 || 7.448 | 6.589 | —30.000 1.01E-5
5 13.0 | 12.5 | —35.0 || 7.448 | 7.161 | —35.000 2.67TE-5
6 95 | 14.0 | —35.0 || 5.443 | 8.021 | —35.000 3.91E-6
7 50 | 13.5| —30.0 || 2.864 | 7.734 | —30.000 647TE—6
8 1.0 {105| ~150 1}l 0572 | 6.016 | —15.000 6.14E—6
9 | -1.0] 6.5 0.0 —0.572 | 3.724 | 0.000 1.90E -5
10 | -15| 3.0 | 20.0 || —0.859 | 1.718 | 20.000 1.10E-1
S =147E—4
Table 1: The 10 Desired Positions
7 Conclusion
Recent work in approximate motion synthesis for pla-
nar and spatial mechanisms has focused upon de-
vising approximate metrics for planar and spatial
[ Link [ Length(orig) || Length(trans) | displacements, see Kazerounian and Rastegar 1992.
DRIVING 6.869 6.864 These approximate metrics usually involve placing
COUPLER 8.204 8.904 bounds on the operational space of the design and
DRIVEN 5187 5.188 the volume of the body to be guided.
FIXED 8.267 8.977 In this paper we have presented our technique of

using spherical displacements to approximate pla-
nar displacements so that we may synthesize planar
Table 4: Mechanism Link Parameters: Sph. Approx. mechanisms with a metric that is approximately in-
variant to choice of coordinate system. We choose
the radius of the approximating sphere in accordance
with selected bounds on the operational space of the
design. Furthermore, we have shown that the error
induced by approximating planar motions with spher-
ical motions is of the order —}—%-5, where R is the radius
of the sphere. Moreover, we have demonstrated our
technique by synthesizing a planar 4R mechanism for
a change of coordinates of 10 desired positions.

[ Tink [ Length(orig) || Length(trans) |
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