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Abstract

This paper evaluates the performance of a cooperating
robot system using movements planned for minimum
time. Minimum time movements characteristically re-
quire that a set of motors in the robot be driven at their
maximum torque throughout the motion. Thus these
movements are limited by the combination of motor per-
formance, mechanical advantage of the kinematic chain,
and the location of the start and goal positions. By in-
creasing the payload until a minimum time solution is no
longer feasible the performance limit of the system for
the associated path is obtained. The cases of two robots
working individually and together are examined in order
to find the performance enhancement obtained by having
two robots cooperate.

1 Introduction

In this paper we describe the TORUS software package
which determines time-optimal paths for general robotic
systems. This software is used to evaluate the perfor-
mance of a pair of cooperating robots. This is done by
determining the maximum load feasible for a time-optimal
movement of a cooperating robot system along a given
path. This movement characterizes the performance lim-
its of the robot system on this path. Bobrow et al. 1985
and Shin and McKay 1985 decompose the problem of
determining these movements into optimization along a
given path followed by path optimization. McCarthy and
Bobrow 1989, and Bobrow et al. 1985 generalized this
strategy to determine time-optimal point to point move-
ment for the closed chain robot systems formed by two
robots holding the same workpiece.

The focus of this paper is on the maximum load that
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can be carried on several different paths by a pair of pla-
nar cooperating robots. These maximum payloads are
then compared to those achievable by either arm working
alone. The results are that while 10lbs is the maximum
payload for a single robot, this increases to more than
2001bs when the two robots work together. In addition,
we have found that while strong and weak paths may be
intuitively obvious for single robots, they are not as read-
ily apparent for cooperating robots. -

The motor torques, link masses and dimensions for the
robot used in this analysis are an idealized version of an
arm under development at Odetics, Inc. While this analy-
sis technique is applicable to general manipulator systems
(McCarthy and Bobrow, 1990), the focus here is on pla-
nar movements to highlight its use in the performance
evaluation of robot systems.

2 System Dynamics

In this section the equations of motion are derived for the
closed chain formed by two general robots and a work-
piece, see Fig. 1 (McCarthy and Bobrow 1990, Huang
and McClamroch 1988, and Mills and Goldenberg 1989).

Let q1 and g2 be the vectors of joint angles for the
left and right robots, respectively, and let qs define the
position of the workpiece. The equations of motion of a
general pair of cooperating robots are obtained by first
writing Lagrange’s equations for each robot arm and the
workpiece separately. The holonomic loop closure con-
straints and Lagrange multipliers are used to combine the
three systems to obtain;

Mi(a)ldr + hif(qi,qi) = wm + &
[M2(q2)]ld2 + ho(qe,d2) = ue + c2 1)
[Ms(gs)lds + hs(gs,gs) = us + €3
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Figure 1: Two cooperating PUMA manipulators.

Where [M;], h; are the corresponding mass matrix,
Coriolis and gravity terms, respectively, u; are the gener-
alized forces due to the actuators for each system, and c;
represent the generalized forces due to the interaction of
the three systems.

In order to relate the constraint forces c; to the dy-
namics of the system, use the fact that the constraints do
no work. That is to say they do not absorb any power.
Hence, defining ¢T = (c¢f,c],¢3) and q” = (qf ,q3,43)
we have,

cTg=0 (2)
for all admissible velocities q.

For constrained systems, the Q; are not arbitrary; they
must satisfy the closure equations which guarantee that
the robots hold the workpiece. Using the standard La-
grangian formulation of the dynamics, it can be shown
that there is a vector A s 0 such that

e =[J(@)"x ®3)

where [J(q)] is the Jacobian of the complete system,
(Greenwood, 1988). This vector A defines the internal
forces of the closed chain system. The coupled equations
of motion for the system become

[M(@)]d + h(q,q) = u+{J (@)X, (4)

where
[Mi] O 0
[M(q)] = [ 0 [M] 0 }
0 4] [Ma]
h; U3
h(q,(‘l)::{ ho } andu::{ s } (5)
hs Uus

2613

In general the forces u are related to the vector of ac-
tuator torques 7 by a matrix transformation:

u = [B]r (6)

3 Time Optimal Control
3.1 Strategy

The given path is parameterized in terms of a path pa-
rameter s. This parameter s then identifies the position
of the workpiece in space as it traverses the specified path.
The total time to traverse the path is,

I ds
tiotal = / -
.. 8

i

(M)

Our goal is time-optimal control. That is to say we seek
the control that minimizes the time required for the sys-
tem to traverse the given path. This control maximizes
the velocity of the system along the path. To maximize
5 the system must be either accelerating, or decelerating,
as much as possible. The time-optimal solution is found
by determining the maximum, or minimum, acceleration
5 along the path that is attainable by the robot system,
(Bobrow et al., 1985 and Shin and McKay, 1985). The
time-optimal control is found by identifying the points
along the path at which the system must switch from
maximum acceleration to minimum acceleration.

3.2 Implementation

The time-optimal trajectory along a given path can now be
found. Using the closure equation and the path equation,
the equations of motion for the system, Eq. 4, are written
in terms of the path parameter s, and its first two time
derivatives, (Chu, 1990). For each s and § Eq. 4 becomes
a set of n + p + m + 1 linear equations in 2(p + m + 1)
unknowns; where n is the number of coordinates used to
describe the system, p is the number of actuators, and
m is the number of constraint equations. Eq. 4 and the
bounds on 7 and A combine to form a linear programming
problem;

Maximize/minimize § subject to:
a(s)s — [B]r — [CITA = d(s, 5)
, 8)
Tmzn S T S Tmaa:
Amin S A S )mez

The second step is to construct the mazimum velocity
curve. The maximum velocity curve represents the max-
imum velocity the system can have at each point on the
specified path. The maximum velocity curve is found by
numerically determining the maximum value of 5, max($),
for each s along the path. For each value of s along the




path an arbitrary guess is assigned to max(3). If there ex-
ists a solution to Eq. 8 then the initial guess is increased
until a solution does not exist. If there does not exist a
solution for the initial guess, the guess is decreased until
a valid solution is found. Note that for a solution to be
valid both 7 and X must be within their prescribed lim-
its. Using this method the max(3) for each s along the
path can be approached using an algorithm such as the
bisection method.

Once the maximum velocity curve has been constructed
the time-optimal trajectory can be found. First, using
Eq. 8 solve for the minimum acceleration 5 at the end
point of the path and integrate backwards in time to con-
struct the minimum acceleration curve. This integration
is performed until the curve intersects the maximum ve-
locity curve or one of the axis in the $-s plane. Similarly,
find the mazimum acceleration curve by integrating for-
ward in time from the beginning of the path. Connect-
ing these curves in the § - s plane are swilching points.
These are the points along the path at which the system
changes from maximum acceleration to maximum decel-
eration and vice-versa. These points were found using a
modified form of the ladder search algorithm, (Chu, 1990).

4 Finding the Optimal Path

The given path is varied using a non-linear optimization
routine to find the path which minimizes the time for the
system to go from its specified start and end positions.
That is to say the control points of the path are manipu-
lated to find the time-optimal path that takes the robot
system from the start point to the end point. This path
is not a global optimal path in that it is limited by the
number of control points of the B-Splines. However, as
the number of control points is increased the path will
approach the global time-optimal path (Chu, 1990).

5 Software Overview

The methodology described above has been implemented
in a software package entitled, TORUS (Time Opti-
mal Robot System), see Fig. 2. Initially, the equations
of motion are coded in EOM, and the program MAP
rewrites these equations in terms of the path parame-
ter s. The non-linear optimization package used to find
the control points-of the time-optimal path is called ADS
(Vanderplaats, 1984). The algorithm used is the wvari-
able metric method for unconstrained minimization (Davi-
don, Fletcher, and Powell, 1963). On first iteration it
is assumed that the path being considered is not op-
timal and the time-optimal control problem along this
path is solved. The control points are sent to FOR-
BAK (FOwaRd and BAcKward integration controller) to
integrate the equations of motion in order to construct

EOM — -t MAP
>

| DVERK

| smeeex I(—-) FORBAK

l LADDER

)
!

PRINT

RESULTS (—-—-

Figure 2: TORUS Flowchart

the maximum and minimum acceleration curves. To ac-
complish this FORBAK calls upon three subprograms:
DVERK is a 5th and 6th order Runge-Kutta (IMSL) inte-
gration routine used to integrate the equations of motion.
SIMPLEX is a package written to solve the linear pro-
gramming problem of equation Eq. 8 using the simplex
method (Thie, 1979). LADDER is a program written
to find the switching points that connect the maximum
and minimum acceleration curves using the ladder search
algorithm . TOT (Time-Optimal Trajectory) is a pro-
gram written to take the output of FORBAK, the maxi-
mum and minimum acceleration curves and the switching
points, and construct the time-optimal trajectory for the
system. From the time-optimal trajectory tioeat is com-
puted and its value is sent to ADS along with the control
points that define the path. If ADS determines that a
time-optimal path has not been found it computes the
control points for the next iteration. If ADS has decided
the path is the time-optimal path, that is to say the algo-
rithm has converged to a minimum #totai, then the output
is printed and execution ceases.
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6 Finding the Maximum Pay-
load

In the cases studied the system starts and ends the path
at rest. As the payload is increased, the maximum and
minimum accelerations § that the system can attain along
the path are decreased. Therefore, as the payload is in~
creased the time-optimal trajectory falls in the $-5 plane.
The trajectory curve in the -3.plane drops towards the s
The payload has exceeded the capacity of the system
when there is some configuration (s*) for which there is
no valid solution to Eq. 8. That is to say that at s* the
maximum, or minimum, acceleration curves yield s* = 0.
In which case, the system becomes stuck on the path and
is no longer able to move. Physically, at s* the motor
limits or reaction force limits, have to be exceeded for the
robot system to continue along the path. The maximum
payload for a path is found by using the bisection method
to incrementally increase the payload until a valid solution
to Eq. 8 does not exist.

7 Numerical Examples

To illustrate the application of the algorithm described in
this paper two identical prototype robots were used. The
paths studied are made up of three connected B-splines.
The robots are positioned such that their base joints are
0.5 (m) apart, see Fig. 3. The robots’ geometry, mass,
and peak motor torques are as follows:

Tink | Length (m) | Mass (kg)
K 0.6136 29.5
L 0.5128 6.81
H 0.7620 varied
Motor | Max. Torque (Nm) | Min. Torque (Nm)
8 452.0 -452.0 -
¢ 226.0 -226.0
e 67.8 678
71 Casel

The first path studied is shown in Fig. 4. This path is
linear in that all three path parameters, {z,y,a}, vary
Yinearly with respect to s. The maximum payload of
each arm working alone on this path was found to be
10lbs. Note the slope of the time-optimal trajectory ap-
proaches zero at the end of the path (s=3). In this posi-
tion the payload is cantilevered at the robot’s wrist and
the torque limits at the wrist determine the maximum
payload. Results for both the left and right robots are
shown in Fig. 5 and Fig. 6, respectively. Second, the co-
operation of the two robots was studied. If the reaction

y;, ROBOT2

o}

N

7 ///.6// oL L

Figure 3: Two cooperating planar robots.

forces are bounded, that is to say the amount of squeez-
ing and pulling on the object are limited to +/- 200 (N)
the system’s maximum payload was found to be 20lbs. If
the reaction forces are not bounded, the maximum pay-
load increases to 218lbs, see Fig. 7. Finally, the path was
optimized for the 218lbs payload and is shown in Fig. 8.
Along this path, the time for the system to travel from
the start position to the goal position decreased 18 %.

7.2 Case 2

In this case we examined a path along which we thought
the robots would be strong. A linear path with the work-
piece centered between the robots was studied, see Fig.
9. The left and right robots, working independently, were
found to have a maximum payload of 6lbs. The robots
working together with no bounds on the reaction forces
at the workpiece were found to have a maximum payload
of 20lbs.

7.3 Case 3

In the final case studied we analyzed what we thought
would be a weak path for the robot system. A linear
path with the workpiece going from left to right across
the front of the robots. The path selected is shown in
Fig. 10. For a robot working independently the maximum
payload was found to be 10lbs. As in Case 1, the payload
is limited by the robot’s wrist. For the robots working
in cooperation with no bounds on the reaction forces the
maximum payload increased to 130lbs. This result was
counter to our expectations.
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8 Conclusion

In this paper we evaluated the performance of a cooperat-
ing robot system using movements planned for minimum
time. We studied the maximum load that can be carried
by the robots working individually and in unison along
three different paths. In Case 1, the pick and place path,
we found that the maximum payload for the independent
robots was 10lbs, while the maximum payload for the co-
operating robots was 218lbs. In addition, we optimized
the path for the 218lbs payload and achieved an 18 % de-
crease in time to travel from the start position to the goal
position. In Case 2, the vertical path, we found the inde-
pendent robots able to carry 6lbs while the cooperating
system was able to carry 20lbs. In Case 3, the horizontal
path, we found the individual robot’s maximum payload
to be 10lbs, however, the maximum payload for the co-
operating system was found to be 130lbs. One insight
gained from this analysis is that strong and weak paths
may be intuitively obvious for single robots, however, for
cooperating robots they seem counter intuitive. An im-
portant result is that while 10lbs is the maximum payload
for a single robot, this can increase to more than 200lbs
when the robots work together.
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