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ABSTRACT providing this necessary visualization of the problem to the de-

In this paper we present a novel method for motion genera- signer. Efforts have been made to create computer graphics based
tion task specification for spherical mechanisms. This is accom- software packages for spherical four-bar mechanism design.
plished with a new methodology for determining the optimal de- Sunx Was the first spherical mechanism computer-aided de-
sign sphere and the orientations on this design sphere for a finite sign(CAD) program written by Larochelle et al 1993 for use on
set of desired spatial positions. In addition, we include a modi- Silicon Graphics workstationsSnx begins by displaying de-
fication to the method which enables the designer to require that sign sphere The design sphere defines the surface in space
one of then desired spatial positions be exactly preserved. The upon which the workpiece is to be moved. The relative dis-
resultis that designers can now specify spherical mechanism mo-placements between the positions on the design sphere are purely
tion generation tasks without having to introduce into the design rotational and are calledrientations. Orientations are defined
space an artificial design sphere. They are now free to work in by their longitude, latitude, and roll angles(Larochelle and Mc-
unconstrained three-dimensional space. The application of this Carthy 1995). IrSwnx orientations are displayed to the designer
new task specification technique is discussed in a design caseas coordinate frames on the surface of the design sphere, see
study. Fig. 1. The current version d&~nx has modules for perform-
ing synthesis for three or four position rigid body guidance. It
is important to note that iGnx the design sphere is of arbitrary
radius and its location in space is undefined.

SwnxPC (Ruth and McCarthy 1997) is a CAD program for
personal computers which lil&-nx utilizes a design sphere with
orientations displayed on the sphere’s surface. With this soft-
ware spherical mechanisms can be designed for four orientations.
S+nxPC also has the capability to design planar mechanisms for
four position rigid body guidance.

In 1995 Osborn and Vance developed the first virtual real-
ity(VR) based approach to spherical mechanism design, entitled
S+ereVR. This initial exploration of the use of VR for spherical
mechanism design has led to the development oFag8ner-
ation of VR based spherical mechanism design software called

INTRODUCTION

Spherical mechanisms are linkages which generate motion
on concentric spheres and are the simplest mechanisms which
provide spatial movement. In contrast, planar mechanisms gen-
erate two-dimensional motion. For this reason their design is
compatible with using conventional drafting tools while the syn-
thesis of spherical mechanisms is three-dimensional and is not
well suited for drafting techniques. It is essential that the spher-
ical mechanism designer be able visualize the entire problem in
three-dimensions. Computer graphics can be an effective tool for

*Address all correspondence to this author.

1 Copyright [0 1998 by ASME



Figure 1. Seinx DESIGN SPHERE

Figure 2. A DESIRED TASK

Isis, see Larochelle, Vance, and McCarthy 1998. The program
utilizes the compute engine &-nx1.2 and provides virtual ob-
jects in the design environment so that the design process takeds a procedure which numerically determines the optimal design
place in a virtual representation of the physical workspace. This sphere and orientations for a finite set of desired spatial positions.
new approach to mechanism design has demonstrated a need for
new and efficient means for specifying the design task in the ac-
tual physical workspace of the mechanism. ORIENTATIONS IN E* AND BIQUATERNIONS
To synthesize a spherical mechanism, the designer must first ]
define the task to be accomplished. Here we are concerned with N 1995 Larochelle and McCarthy presented an algorithm
task specification for moving a workpiece through a sequence of fOr approximating a set ai positions in planar Euclidean space
prescribed orientations in space. This task is referred tiyas (E?) with n spherical orientations in three-dimensional Euclidean
body guidancéy Suh and Radcliffe 1978 and asotion gener- space E3_). By _utlllzmg a bi-invariant metric on the image space
ation by Erdman and Sandor 1997. An example of a rigid body Of Spherical displacements they arrived at an approximate bi-
guidance task is shown in Fig. 2. The desired positions of the invariant metric for planar positions in which the error induced
workpiece are defined in space. A coordinate frame is attached PY the spherical approximation is of the ordgr whereR is the
to the workpiece and its location, in each of the desired positions, fadius of the approximating sphere. In this paper we extend their
is recorded. To date, when designing spherical mechanisms theMmethodology to the general spatial case and utilize the results to
designer must determine an appropriate design sphere, i.e. itsprovm!eanovel me_zthod of specifying motion generation tasks for
center and radius, from the desired spatial positions. Moreover, SPherical mechanisms.
the sets of angles which define the orientations of the body with It was shown in Larochelle and McCarthy 1995 that orien-
respect to that design sphere must also be determined. Currentlyfations inE3 may be used to approximate positions in a bounded
no methodologies exist to facilitate this process. It is only af- region of a two-dimensional plane. We utilize the contributions
ter determining the design sphere and the orientations that theof Etzel and McCarthy 1996 and extend that idea by using ori-
designer can utilize CAD tools such Ssx andSnxPC. entations irE* to approximate positions in a bounded region of
In this paper, one method of determining the optimal design three-dimensional space. This can be done by using a small por-
sphere and orientations from a desired set of spatial positions tion of a four-dimensional hypersphereyadgeto approximate
is presented. First, the spatial positions are approximated with @ bounded region of space. Orientations on the surface of this
orientations in four-dimensional Euclidean sp&®( Biquater- wedge, which we represent with biquaternions, can be used to
nions are then used to represent these orientations. Next, theapproximate the spatial positions. See Ge 1994 in which he ex-
distance between the spatial positions and the orientations on a@mines the theory of biquaternions as representations of orienta-
candidate design sphere are calculated using a bi-invariant met-tions on a hypersphere.
ric on biquaternions. Finally, an optimization method is used We proceed by briefly reviewing quaternions and biquater-
to minimize the distances between the spherical orientations on nions. Recall that an orientation E® can be represented by
the candidate design sphere and the spatial positions. The resulta quaterniorg = [q; 2 g3 G4]". The four components of the
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quaterniory, sometimes referred to as Euler parameters are, and,

= sing = sg ‘0
01 = & 5= Sk > :
.6 8 RO, 0W)] :0
0 = Sysm§ = Sysz K(8,p,W)] = 0
= sing = 59 .
B=% 5= S e B
S] S] 10 0 0:1]
q4 - COSE = CE (1)

The angleso, B andy are defined as follows: téa) = %,

tan(B) = % and tarfy) = % wheredy, dy, andd, are the compo-
nents ofd andR is the radius of the hypersphere.

The bounded spatial workspace must represent a only small
portion of the hypersphere (referred to as a wedge), hence we

wheres and®@ are the rotation axis and the angle of rotation as-
sociated with the orientation, respectively. Note that the compo-
nents ofq satisfy the following constraint equation,

P+ +95+05—-1=0 2) determine the radius of the hypersphere as:
and lie on a unit hypersphere which we denotthasmage space R= 4—|1' (5)
of spherical displacements €2

Recall that the position of a body I has six degrees of
freedom (three to define orientation and three to define location) whereL is the largest component of the translation vectors from
and can be represented by a 4x4 homogeneous transform(Pauthe set of spatial positions amds the maximum allowable error
1981): in the approximation of the spatial positions with the orientations
in E%. Next, we review how to determine the biquaternion asso-
ciated with the matrixD].
[R(6,@,W)] °d Recall that biquaternions have the following form:

T=1| i, 3
0 0 01 G=G+wH (6)

whereG andH are quaternions ardis defined such that? =1,

see Ge 1994. The biquaternion can also be represented as an or-
[R(8,,y)] = Rot,(8)Rok(—@)Rot (W) dered pair of quaterniorf% = (G,H). The quaternion§& and

H are determined by the following computations. The fourth

) ) components oz andH are G4 = coq[) andHs = cogqVv) re-
whered is a 3x1 translation vector. The anglsp, andy are the spectively, withp andv being the real part of the eigenvalues

longitude, latitude, and roll angles respectively (see Larochelle ¢om matrix [D]. The other three components GfandH are
and McCarthy 1995). In 1996 Etzel and McCarthy showed that computed as follows:

a 4x4 homogeneous transformBrf can be approximated by a

pure rotation inE*:
Gy = d23—d3£21;d14—d41

day 03+ dp—d
G2 — (831 Y137TH42—H24
D) = (e, BYVIK(6,0.6) @ 0T st
4H,
Hy = dzp—dr3—thatday
Where, H2 — _(dgl—dfs—d42+d24)
4Gy
Hs = dp1—dho—dza+dag
ca 0 0 4Ga
3 | —sBsa cf O SBea
(o,B,y)] = _sycBsu —sysB ¢y sycBca whered;; are the elements dD]. From the above relations, it
—cycBsa —sPey —sy cycBea is evident that there are three special cases which need to be
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addressed, see Etzel 1996. FirstGif = 0 then the first three
elements oH are:

Hy d1%+d44

Ho d22+%144

Hs d33+é44
T2G3

Second, ifHs = 0 then the first three components®fare:

— Gig+dag

G ZH%j
M

2 d 2Hd
O33+044 44

G T 2H;

Finally, if G4 = 0 andH4 = 0 then solve the following relations
for H;i(i=1,2,3):

d31+ da2
Hs

O21—dsaz
Hy

dii+dag
Hi

and obtairG; as in theHs = 0 case above.

The Metric
There exist numerous useful metrics for defining the dis-

tance between two points in Euclidean space, however, defin-

ing similar metrics for determining the distance between two
positions of a rigid body is still an area of ongoing research.
In the case of two positions of a rigid body E? any metric

spheri cal
A ori ent ati on

Figure 3. OPTIMAL DESIGN SPHERE

OPTIMIZING THE DESIGN SPHERE

In Fig. 3 a spherical orientation on a design sphere is shown.
To obtain the orientation frame relative to the fixed frame three
coordinate frame transformations are applied. First, the moving
frame is translated along the&Bcenter vectoc. Next, the mov-
ing frame is rotated by the longitude, latitude, and roll angles as
defined by Eqg. 3. Third, the moving frame is translated along the
3x1 radial vectorr. The spherical orientation is now defined by
the following 44 homogeneous transform:

Tspherical(r ,C) =

where[R] is the 3x3 rotation matrix defined in Eq. 3. LRbatial

used to measure the distance between the positions yields a rebe the 4x4 homogeneous transform representation of a desired
sult which depends upon the chosen reference frames, see Marposition of the workpiece in space. To determine the optimal

tinez and Duffy 1995. However, Ravani and Roth 1983 define
the distance between two orientationdhas the magnitude of

design sphere the distance betw@gtial andTspherical Must be
minimized for each of the desired positions ifE3. The next

the difference between their associated quaternions, which is asection presents a method to minimize this distance by utilizing

bi-invariant metric. Recall that a bi-invariant metric is indepen-
dent of choice of both the fixed and moving frames. Etzel and

McCarthy 1996 extended this idea and presented a bi-invariant

metric for orientations irE*. Here, we review their metric and
present a methodology which employs the metric to determine
the optimal design sphere associated with a finite set of spatial
positions.

The bi-invariant metric on biquaternions is defined as:

dQ.R) = \/Q-RTQ-R +(S-T)T(S-T) (7)

whereQ = (Q,S) andR = (R, T) are both biquaternions. For
a proof that this metric is bi-invariant see Etzel and McCarthy
1996.

the bi-invariant metric discussed above.

Optimization

Given a finite set oh desired positions it the task is to
determine the optimal design sphere and rtharientations on
that sphere. By examining the homogeneous transform represen-
tation of Tspherical it is clear that the optimization variables are
andc since[R] may be extracted froﬂgpaﬂaﬁ. The optimization
problem then becomes:

Minimize:
f(r,c)

INote that by extractingR] in this manner we guarantee that the orientations

of then T will be identical to that of their associat ial:
spheriea Copyright [ %’%&é by ASME



s axes associated with the spatial positions:

Il
fa

Cinitial = :lT (8)

wherel = (3) andm= (3) is the number of relative screw axes

The initialization ofr is obtained by equating the translation
q vectors ofTspatial aNdTsphericar FOr any given spatial position the
radial vectorr of the design sphere is then,

r = [R" (dspatial — ©)- 9)
Figure 4. COMMON NORMAL OF TWO SCREW AXES

Substitutingeinitial iNto Eg. 9 we obtain:

Subject to: r = [R]" (dspatial — Cinitial )- (10)
Using Eq. 10 we computefor each spatial position. The initial
estimation of the radial vector is then the average,

Irif<a
el <L Iy
Finitial = % (11)
where:

Preserving One Position
It may be necessary for the designer to require that one of
n._ the desiredspatial D€ preserved. In this case the design sphere is
f(r,c) = .Zld(Qi; Ri)- constrained to exactly preserve this one spatial position(referred
= to asTexac). The design sphere is then optimized to minimize
the distance between the remainifagatia’ Sand their associated
We utilize thesimplex method for function minimizatiom Tspherical S L€t us label the elements of the 4x4 homogeneous
find r andc that minimizef(r,c), see Nelder and Mead 1965. transform representation &xact as,
This method was selected since it does not require analytical

gradients and it is a direct multidimensional minimization algo- .
rithm. [Rexac] : dexact

Texact T I

Initialization

If the n spatial positions are in fact spherical orientations B
then the center of the design sphere is located at the intersectiont
of the relative screw axes associated with the positions. How-
ever, with general spatial positions these relative screw axes will
not intersect. Hence, we find the point nearest all of the relative dexact = [Rexac]r +C.
screw axes and use it as the initial center of the optimal design
sphere. In Fig. 4 the common normal associated with two relative We note that Eq. 12 is a linear system of three equations in the
screw axes is shown. The intersections of the common normal six unknown components afandc. The simplex method for
with the two screw axes aggandq. Note that if the screw axes
do not intersect then the point in space nearest the screw axes————

is the m?dpoint of the Segmem- The initial estimation _Of the 2Note that(]) denotes the binomial coefficient, often referred tormstoose
centerc is selected as the point nearest all of the relative screw r”.

y equating the translation vectors Tact andTspherical We 0b-
ain:

12)
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function minimization is employed to optimize the location of
the center of the design spherand Eq. 12 is used to determine
r at each iteration,

r= [Rexact]T(dexact— C)- (13)

SPHERICAL INDEX

Obviously, not all finite sets of general spatial positions can
be approximated with spherical orientations. Some sets of spa-
tial positions are more near spherical than others and yield bet-
ter spherical approximations while other sets of spatial positions
may be far from spherical and for these no acceptable spherical
approximations exist.

The method presented here does not guarantee an accept-

able set of spherical orientations may be found for every set of
general spatial positions. Recall that the purpose of this method
is to facilitate motion generation task specification for spherical
mechanism design. The implication being that the set of spatial
positions will benear sphericabnd the method we present here
determines the exact spherical orientations which best approx-
imate the near spherical positions. As a measure of how near
spherical the original spatial positions are we utilize the follow-
ing spherical index®:

m
z |drelative|
i=1

©= " m

(14)

wheredelative is the translation along the relative screw axes as-
sociated with two positions anah andL are as defined above.
Sets of spatial positions with smadl yield acceptable spherical
approximations while sets with large will not yield acceptable
spherical approximations.

CASE STUDY

We now illustrate the task specification methodology by ap-
plying it to the motion generation task shown in Fig. 2. The lon-
gitude, latitude, and roll angles(in degrees) and translation vec-
tors for the four desired spatial positions are found in Tbl. 1. The
spherical index value for these positionsis= 7.211E — 8 which

The optimal center and radial vectors for this design sphere are
c=1[0.101900791 00244 andr = [-0.0771 00151 50821 .
The optimal orientations(1’,2’,3",4") and their distances from the
original spatial positions are found in Thl. 1.

Having now determined the orientations which best approx-
imate the original spatial positions we can now $sex to de-
sign a spherical four-bar mechanism to generate the desired mo-
tion. The resulting mechanism, as displaye®hyx, is shown in
Fig. 6. In order to employ this design to generate the desired mo-
tion manufacture the coupler for a radius|pf ||, manufacture
the remaining links at appropriate radii, mount the mechanism
such that the center of its associated sphere is locatedaad
attach the workpiece to the coupler.

SUMMARY

In this paper we have presented a novel method for motion
generation task specification for spherical mechanisms. This was
accomplished with a new methodology for determining the op-
timal design sphere and the orientations on this design sphere
for a finite set of desired spatial positions. Moreover, we have
included a modification to the algorithm such that one of the
desired spatial positions is exactly preserved. The result is that
mechanism designers can now specify spherical mechanism mo-
tion generation tasks without having to introduce into the design
space an artificial design sphere. They are now free to work in
unconstrained three-dimensional space.

Finally, we believe that the utility of this new task speci-
fication algorithm will be most evident when utilized in three-
dimensional computer graphics design environments such as
SHnxPC and>winx. Moreover, we anticipate that it will be an asset
to the newssvirtual reality spherical mechanism design environ-
ment currently being created in a collaborative effort lead by Dr.
J.M. Vance at lowa State and Dr. P.M. Larochelle at Florida Tech.
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