Abstract

This paper uses the kinematic mapping into the imaée

space of spherical displacements to design a mult
degree of freedom spherical closed chain, the so called
3-dof spherical robotic mechanism, to guide a body
through an arbitrary number of orientations. The
design problem is to determine where to mount the
robotic mechanism and where to hold the workpiece.
A numerical ezample is given for 6 orienialions.
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1 Introduction

This paper presents the design of the 3-dof spheri-
cal robotic mechanism. A spherical robotic mecha-
nism is a multi degree of freedom simple spherical
closed kinematic chain. In the case of 3-dof spherical
robotic mechanisms the closed chain consists of two
3R spherical open chains, or triads, which connect the
workpiece, or floating link, to the ground. To maxi-
mize the workspace of the mechanism the two links in
each of the 3R open chains are chosen to be 90(deg)
in length.

For facilitating the kinematic synthesis of the 3-dof
spherical robotic mechanism we view its 3R spheri-
cal open chains as variable crank length spherical RR
dyads and employ well known dyadic synthesis tech-
niques for rigid body guidance.

In Bodduluri 1991 the solution to four position
rigid body guidance for the spatial 4C mechanism
was presented and in Larochelle 1994 a design proce-
dure for an arbitrary number of prescribed positions
was demonstrated. Here we extend the works of Ra-
vani and Roth 1983, Bodduluri 1990, and Larochelle
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1994 to the dimensional synthesis of spherical robotic
mechanisms for n position rigid body guidance, see
Fig. 1. The first step of the design process is to de-
fine the design goal of the mechanism in terms of the
desired positions of the moving body. The spheri-
cal robotic mechanism in this work possess three de-
grees of freedom and may be viewed as a spherical 4R
mechanism with variable crank lengths. The design
procedure allows for bounds on the crank lengths of
the robotic mechanism. In the extreme case that the
two crank lengths are held fixed we have a spherical
4R mechanism which in general can guide a body
through only five positions, see Suh and Radcliffe
1978. Therefore, we utilize an optimization proce-

_ dure first derived by Ravani and Roth 1983 by which

we -vary the synthesis variables so as to minimize the
position error of the mechanism through an arbitrary
number of positions.

The optimization algorithm employed involves
writing the kinematic constraint equation of the vari-
able crank length spherical RR dyad using the com-
ponents of a quaternion.” We view these equations
as constraint manifolds in the image space of spher-
ical displacements, see Bottenra and Roth 1979 and
McCarthy 1990. The result is an analytical represen-
tation of the workspace of the dyad which is param-
eterized by its dimensional synthesis variables. We
then combine two variable crank length spherical RR
dyads to form a 4R closed chain. The constraint man-
ifold of the variable crank length 4R mechanism is
simply the intersection of the constraint manifolds
of its two RR subchains. This intersection provides
an analytical representation of the workspace of the
robotic mechanism in the image space of spherical
displacements. The optimization goal is to determine
the design variables such that all of the prescribed
positions are either: (1) in the workspace, or, (2) the
workspace comes as close as possible to all of the de-
sired positions. The result of the design processisa 3-
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dof mechanism capable of providing general spherical
motions. In what follows, we apply the optimization
algorithm to the design of spherical mechanisms with
six revolute joints, the 3-dof spherical robotic mech-
anism. A design case study for 6 desired orientations
is presented.

2 Spherical Displacements

First, we review the use of quaternions for describ-
ing spherical displacements. A general spherical dis-
placement may be described by a 3 x 3 orthonormal
rotation matrix [A]. Using the rotation axis s and the
rotation angle § associated with [A] we can represent
the spherical displacement by the four dimensional
vector, q, which is written as, see McCarthy 1990,

g1 = sgsin g— (1)
g2 = Ssysin 5

gs = ssin 5

ga = cos 3

We refer to q as a quaternion. The components of q
satisfy,

Gs(q)

and lie on a unit hypersphere which we denote as the

imnage space of spherical displacements.

~ The rotation matrix, [A] can be recovered from the
quaternion, q, as follows,

(4= ®

C+B+E+G-1=0 (2

2(g193 + 9294)
2(g293 — q194)
-} -2 +q+ql

2(9202 — 9304)
=93 +95 ~ 95 + g
2(g293 + q194)

2{q192 + q3q4)

92— ¢3 — g2 +q7
2(g193 — 92491)

3 Constraint Manifolds

In this section we derive the algebraic constraint man-
ifold of the spherical RR dyad. The continuous mo-
tion of the end link of an open chain maps into a
constraint manifold in the image space. For closed
chains the constraint manifold of the mechanism is
the intersection of the constraint manifolds of its open
subchains. The constraint manifolds are derived by
using the geometric conditions that the joints of the

Figure 2: A Spherical RR Dyad

dyad impose on the moving body. The vector equa-
tions for the geometric constraints are based upon the
work of Suh and Radcliffe 1978, and Bodduluri 1990.

A spherical RR dyad. is shown in Fig. 2. Let the
axis of the fixed joint be specified by the vector u
measured in the fixed reference frame F and let the
moving axis be specified by A measured in the moving
frame M. Because the two axes are connected by a
rigid link the angle between the two axes of the dyad
remains constant and we have,

u-[A]A = cosa 4

To obtain an algebraic expression for the constraint
manifold in the image space of spherical displace-
ments we substitute Eq. 3 into the constraint equa-
tion, Eq. 4, and yield, :

RRp1(q,r) :

Given u, A, and « the constraint manifold of that
dyad is the set of all image points, q, that are solu-
tions to Eq. 5 and it represents all possible locations
of M with respect to F for the dyad.

u- [A(g)]A —- 'co.sa =0 (5)

4 Fitting Image Curves

. We now describe the method presented by Ravani and

Roth 1983 to perform dimensional synthesis using
constraint manifolds. The first step is to formulate
the constraint manifold of the mechanism, CM(q,r). -

RRsph——a((L r)
RRsph-—b(qv I‘) =0 (6)
Gsph(q)

where RRgph—a(q,r) and RRspn_3(q,r) are from
Eq. 5 written for each dyad of the mechanism, G,(q)

CM(q,r):
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is the quaternion constraint equation, Eq. 2, and r is
the vector of dimensional synthesis variables for both
dyads.

The goal is to determine the de51gn variables r such
that the constraint manifold passes through, or as
close as possible to, the n desired points in the image
space. Let g4 represent one desired point in the image
space. We assume that q4 does not lie on the con-
straint manifold and write a Taylor series expansion
of the constraint m_anifold about qq.

OCM(qq,r
cM(aar) + 298D (=0 (1)
4
Let us now reformulate Eq. 7 as a system of linear
equations,

[lx=b (8)

where, [J] is the matrix of partial derivatives of
CM(q,r), b =—CM(qq4,r), and x = g~ qq. In gen-
eral there will be infinite solutions to Eq. 8. There-
fore, we seek the minimum norm solution of Eq. 8.

The minimum norm solution of Eq. 8 is found by
use of the pseudo inverse of [J],

[+ = 1 (115 (9)
which yields the minimum norm solution,
x* = [ ={UF (V) e (10)

From the definition of x we have,
Q" =qq+x* (11)

where q* approximates the point on the constraint
manifold closest to qq. Moreover, we may use q* to

approximate the normal distance, e(r), from qq to

the constraint manifold,
e(r)’ = (¢" — a2)7(a" — qa) (12)

Finally, performing n position synthesis requires
computing e(r) for each desired position qq4. The to-
tal error is then given by E(r) = 3 i, e?(r) Thus, we
have formulated the » position dimensional synthesis
problem in the form of a nonlinear minimization prob-
lem with objective function E(r). For further discus-
sion of constraint manifold fitting see Larochelle 1994,
Bodduluri 1990, and Ravani and Roth 1983.

5 Case Study

We present an example of the design of the 3-dof
spherical robotic mechanism for 6 position rigid body

guidance. The variable length cranks may be con-
structed by using a spherical isoceles triangle of equal
sides of 90(deg) with the remaining side being the de-
sired variable length crank. The desired crank length
may be obtained by setting the interior angle between
the 90(deg) links to the desired crank length. The 3-
dof spherical robotic mechanism can also be viewed
as two cooperating 3R spherical robots by consider-
ing each variable crank length dyad as a 3R spherical
open chain and by viewing the coupler as the com-
mon workpiece to the robots. If the crank lengths
are allowed to vary from 0(deg) to 90(deg) the sys-
tem can reach any position on the sphere and each
variable crank length dyad may be viewed as a 3R
robot wrist.

The 6 desired posmlons are hsted in Tbl. 1. The 12

element design vector r is,

Ugq
r=]| e (13)

up
Ap

where u and A are the fixed and moving axes of each
open chain. Note that the variable crank lengths are
not design vafiables to be sent to the optimization
routine. That is because we allow o, and a3 to vary
during the motion of the robotic mechanism: More-
over, in this example we have constrained ¢, and ¢y
such that,

75.0(deg) < oy < 85(deg)
75.0(deg) < a3 < 85(deg)

We incorporate the variable crank lengths into the
design procedure as follows.

1. Formulate an initial guess for the design vector
from a spherical 4R mechanism which 1s a solu-
tion to three of the n desired positions.

2. Using the guess for the fixed and moving piv-
ots solve for the two crank lengths such that the
mechanism passes through the first position us-
ing the crank constraint equation, Eq. 4.

3. For each dyad, if the crank length is less than its
lower bound then set it equal to its lower bound,
if it is greater than its upper bound then set it
equal to its upper bound.

4. Evaluate the error for this design to the first po-
sition.

5. Repeat steps 2 — 4 for each of the n desired po-
sitions.

6. Send the design vector and the n position errors
to the optimization routine.
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| Pos. | Long. | Lat. [ Roll ] .
1 —25.06 | 23.16 | —40.09
2 30.00 | 20.00 ] 15.00
3 45.00 | 25.00 | 20.00-
4 60.00 | 30.00 | 25.00
5 75.00 | 30.00 § 20.00
6 90.00 | 30.00 0.00

Table 1: 6 Desired Positions

[ Pos. | DRIVING | DRIVEN | Brror |
1 84.99 84.96 4.29E—14
2 75.02 | 85.00 6.10E—14
3 78.92 84.46 2.08E—14
4 84.99 84.90 2.11E~15
5 83.65 82.33 5.68E —14
6 75.00 85.00 4.9TE—16
S =184E—13

Table 2: Position Results

7. The result of the optimization routine is a bet-
ter guess to the design vector. With the new
design vector repeat steps 2 — 6 until the algo-
rithm has converged to a solution. If the total
error is acceptable then the design is completed.
If not, then select a new grouping of three of the
n positions and repeat steps 1 — 7.

The result of the the optimization procedure is the

required crank lengths, found in Tbl. 2- with the re-
sulting error at that position, and the initial guess and
optimal design vectors for the linkage in Thl. 3. The
optimal design vector provides the location(ug,us) of
the mechanism and the grasp points(As,A3) on the
workpiece.

6 Conclusion

In this paper we have presented our development of
an algorithm, originally proposed by Ravani and Roth
1983, for the dimensional synthesis of 3-dof spheri-
cal robotic mechanism to guide a body through an
arbitrary number of orientations. The synthesis pro-
cedure utilizes an algebraic formulation for the con-
straint manifold of the spherical RR dyad to define
the workspace of the robotic mechanism in the image
space of spherical displacements. The result of the
optimization is the location of the mechanism and
the grasp points on the workpiece.

! Design Vector r |

Initial Guess | Final Design
—0.72233 —0.86620 .
0.47945 0.20586
0.49837 0.45532
—0.80591 —0.61026
—0.16287 —0.59043
—0.56919 —0.52819
—0.95856 —0.90968
0.19023 0.31613
0.21206 —0.26934
—0.65721 —0.06470
—0.43955 —0.56649
—0.61227 —0.82153

Table 3: Optimization Results
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