Abstract

This paper presents a procedure for determining the
fixed and moving congruences associated with four
finitely separated spatial positions. Furthermore, a
methodology is derived for selecting the lines from the
congruences which define the joint axes of a 4C mech-
anism. The result is a design procedure for perform-
ing the kinematic dimensional synthesis of spatial 4C
mechanisms for four position rigid body guidance.

Associated with four finitely separated positions in
space are a fixed and a moving congruence. These
congruences are a two dimensional set of lines, where
each line defines the axis of a cylindrical joint that
guides a body through the four prescribed positions.
In order to uniquely determine a 4C mechanism from
the congruences four free parameters must be spec-
ified. We present procedures for determining these
free design parameters which result in mechanisms
with joint axes that are nearest to some desired lo-
cation. Moreover, included is a detailed numerical
exarnple illustrating the design process.

1 Introduction

In this paper we present the spatial generalization
of the center point and circle point curves of planar
kinematics and the center axis and circle axis cones
of spherical kinematics called the fixed and moving
congruences. The congruences are the set of lines
that define the axes of CC dyads that guide a body
through four prescribed positions in space. A com-
patible pair of fixed and moving axes maintains a con-
stant normal distance and angle in each of the four
positions of the moving body. The fixed and moving
axes define the C joints of the dyad. A C joint is a
two degree of freedom cylindrical joint which allows
translation along and rotation about a line in space.
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Figure 1: The Spatial Triangle

Two compatible CC dyads are combined to form a
spatial closed kinematic chain, a spatial 4C mecha-
nism, see Fig. 2.

- The congruences of lines are a two dimensional set
of lines. We compute the congruences by employing
the spatial triangle technique presented by Murray
and McCarthy (1994). The result is a parameter-
ized set of lines. Qur goal is to derive techniques
for numerically determining the congruences and for
selecting lines from them: to define compatible CC
dyads. We hope that these techniques will in turn
facilitate the creation of computer-aided design soft-
ware for spatial 4C mechanism design.

2 The Spatial Triangle

Before proceeding to the numerical generation of the
fixed and moving congruences it is instructive to re-




Figure 2: The Parameterizing Spatial 4C' Mechanism

view the spatial triangle technique of Murray and Mec-
Carthy (1994) for synthesizing CC dyads compatible
with four spatial positions. In Murray and McCarthy
(1994) it is shown that the spatial triangle prescribed
by the relative screw axes Ss3 and Si with internal

dual angles 9—22 and %é defines the coordinates of a
fixed line G of a CC dyad compatible with four spa-
tial positions, see Fig. 1. The dual vector equation of
the spatial triangle is written as,
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In order to solve Eq. 1 and Eq. 2 for the desired
line G the relationships between the spatial trian-
gle, the complementary screw quadrilateral, and the
4C mechanism corresponding to the complementary
screw quadrilateral must be maintained. We review
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those relationships here and outline the procedure for
determining the line G given four spatial positions.

The generalization of Burmester’s planar four po-
sition theory to four spatial displacements leads us
to consider the complementary screw quadrilateral
512523534514, where Sia, Si3, Sia, S23, So4, and
S34 are the six relative screw axes associated with
the four prescribed spatial positions of a moving
body, see Roth (1967b,1967¢c) and Bottema and Roth
(1979). McCarthy (1993a) shows that by using the
lines which define the complementary screw quadri-
lateral to define the axes of a spatial 4C mechanism
one may obtain the fixed axis congruence in a pa-
rameterized form, see Fig. 2. A planar version of
this result, which yields a parameterized form of the
center point curve for four planar positions is found
in McCarthy (1993b). The procedure presented in
McCarthy (1993a) involves using the lines which de-
fine the complementary screw quadrilateral to define
a spatial 4C mechanism and identifying the quadrilat-
eral as the home configuration of the parameterizing
4C mechanism. This results in a 4C mechanism with
input crank defined by the lines S;5S33, fixed link
defined by the lines 512514 and coupler defined by
the lines S93534. We define the input angle 8y as the
dual angle of the input crank in the home configura-
tion and similarly define the coupler angle ¢g as the
dual angle between the coupler and the input crank
in the home configuration. Murray and McCarthy
(1994) prove that the screw axis of the displacement
of the coupler of the parameterizing 4C mechanism,
from its home configuration to any other valid as-
sembly, is a fixed axis compatible with the given four
general spatial positions. Therefore, we obtain fixed
axes that are parameterized by the input angle § of
the parameterizing linkage.

In their paper Murray and McCarthy (1994) show
that solving the spatial triangle associated with the
two lines which define the input crank in its home con-
figuration, Eq. 1 and Eq. 2, results in the screw axis of
the displacement of the coupler of the parameterizing
4C mechanism, where Af = 6 — 6y and Ad = ¢ — do.
Therefore, by solving the spatial triangle we obtain
a fixed axis compatible with the given four general
spatial positions which is parameterized by the input
angle of the parameterizing 4C linkage. Note that
the internal angles of the spatial triangle are given in
terms of the relative input and coupler angles of the
parameterizing 4C linkage with respect to its home

configuration. —

Having reviewed the relationships between the rel-
ative screw axes, the complementary screw quadri-
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lateral, the parameterizing 4C mechanism, and the
spatial triangle, we now outline the procedure for de-
termining the fixed line G given four spatial positions.

o From the four specified positions determine: the
four relative screw azes(Si2,S23,S34,514), the
cranks lengths of the corresponding parameter-
izing 4C Iinkage( & = 512 323, ﬁ = 523 534,
ﬂ 514 534, 7 = S]_z 514) and the angles 90
and q{)o

Select the parameter value 6 and compute the
corresponding $ by performing a kinematic anal-
ysis of the parameterizing 4C linkage, see Mur-
ray and McCarthy (1994), McCarthy (1993a),
and Duffy (1980). *

Compute the internal angles of the spatial trian-
gle, Ad and A¢, and solve the two dual vector
triangle equations, Eg. 1 and Eq. 2 for the two
unknowns G and ﬂ

3 The Fixed Congruence

In the previous section we reviewed a procedure pre-
sented by Murray and McCarthy (1994) for generat-
ing fixed axes of CC dyads that guide a body through
four spatial positions. We now present a method of
obtaining a numerical representation of the fixed con-
gruence which is parameterized by the input angle of
the parameterizing 4C linkage using the spatial tri-
angle. Recall that the fixed congruence is a two di-
mensional set of lines that define the fixed axes that
are compatible with four spatial positions and that
the solution of the spatial triangle presented by Mur-
ray and McCarthy (1994) yields one line of the fixed
congruence.

Bottema and Roth (1979) and Roth (1967a) have
shown that the direction of each line G determines
a plane and that all of the-lines in that plane that
are parallel to G are members of the fixed congru-
ence. Hence, each line G defines a unique direction
and corresponding to this direction there is an infi-
nite set of compatible screw axes. We proceed with
a method for using the spatial triangle to determine
another line of the congruence, Gz, which is parallel
to G4 = G. These two lines then define the plane
associated with G;.

By examining Eq. 1 we see that the direction of
G, is independent of the translation along, and the

1In general for each & there are two solutions for ¢, simply
let 6 vary from O to 720 and use the first solution for
0 < 6 < 360 and the second solution for 360 < § < 720.

location of, the axes of the parameterizing 4C mech-
anism. In other words, the direction of Gy is solely
dependent upon the directions of the axes of the pa-
rameterizing linkage, this result was first presented by
Roth (1967a). Therefore, to obtain G2 with the same
direction as G we maintain § and vary our choice of
d, where d is the translation of the input crank of the
parameterizing linkage along Si2, (6 = 0 + ed), and
solve Eq. 1 and Eq. 2. Hence, for a given choice of
parameter § we select two different values of d which
yield two lines G and Ga. These two lines then de-
fine a plane of the congruence and any line in this
plane parallel to G is a member of the congruence.
We can now parameterize the lines in the plane
associated with G that are members of the fixed con-
gruence in terms of A, where X is the distance of the

line from G. Given,
G=0C,=1 8 ]
! [ g
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the lines Lg that lie in the plane defined by G; and
G5 and are parallel to G may be expressed as,

3
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Note that n is the unit vector in the direction of the

~ common normal to the lines Gy and Ga, that py is
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a point on G, and selecting A = 0 in Eq. 5 yields
the line G. In Eq. 5 we have the two dimensional
set of lines of the fixed congruence associated with
four spatial positions parameterized by the angle ¢
of the input crank of the parameterizing 4C' mech-
anism, which selects a plane of the congruence, and
a distance parameter A which selects a line in that
plane.

4 The Moving Congruence

The moving congruence is the two dimensional set of
lines that define the moving lines of the CC dyads




that are compatible with four spatial positions of a
rigid body. We obtain a parameterized representation
of the moving congruence by inverting the relation-
ship between the fixed and moving coordinate frames
and proceeding in an analogous manner to the gener-
ation of the fixed congruence. The inverted positions
yield the relative screw axes 5’;2, 5'13, .5';4, 5;3, 5'54.
We then form a complementary screw quadrilateral,
its corresponding parameterizing 4C mechanism, and

solve the spatial triangle for a given choice of @ to ob-

tain the lines H = Hy and Hy which define a plane
of the moving congruence. Proceeding as we did in
the generation of the fixed congruence we obtain the
lines of the moving congruence associated with the
parameter 6, '

o= | ®)

)b
(pr+pn) xh

where,
h x (h — hY)
n T—— 2l 9
< (B3 —B)] ©)
and,

h x h! (10)
Again we note that py, is a point on H and that se-
lecting 1 = 0 in Eq. 8 yields the line H. The result,
Eq. 8, is a two dimensional set of lines, given with re-
spect to the moving frame, associated with four spa-
tial positions that are parameterized by the angle 6 of
the input crank of the parameterizing 4C' mechanism,
which selects a plane of the moving congruence, and
a distance parameter y which selects a line in that
plane. :

Pr =

There is a one-to-one correspondence between lines
of the fixed congruence and lines of the moving con-
gruence. That is to say, selecting a line from the fixed
congruence as the fixed axis of a CC dyad uniquely
determines the moving axis, and vice verse, see Roth
(1967a). Hence, selecting a fixed and moving line
from the congruences to specify a CC dyad involves
two free parameters, 6, and either A or . Therefore,
to uniquely determine a 4C mechanism from the con-
gruences requires the selection of four free parame-
ters; 01, A or u; which define one dyad, and 6y, ),
or ua which define the second dyad. In the next sec-
tion we discuss how to obtain the unknown line of a
spatial CC dyad corresponding to a choice of § and
either A or p.
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5 Completing the Dyad

Having selected a line from either the fixed or mov- -
ing congruences it is now desired to determine the
cortesponding axis of the CC dyad which guides a
body through the four spatial positions. Roth (1967a)
shows that for three spatial positions of a rigid body
there is a one-to-one correspondence between the
moving and fixed axes of a CC dyad. Therefore,
we employ the dyadic dimensional synthesis tech-
niques of Tsai and Roth (1973) for three spatial po-
sitions to obtain the unknown corresponding line, see
Larochelle (1994). We now present a method of de-
termining the unknown fixed line of a dyad once 4
and p have been selected. Note that the procedure
may be inverted to obtain the moving line given a
choice of  and ).

For a given choice of # and p from Eq. 8 we have
the line Ly . Since there is one-to-one correspondence
between the moving and fixed axes of a CC dyad for
three spatial positions we select any three of the four
prescribed positions and solve for the unknown fixed
axis, Lg. Moreover, because the moving and fixed
congruences are both parameterized by the angle 8,
and having computed the fixed congruence, we know
the direction of the line Le, g. Hence, we need only
to determine the moment of the line L which locates
the line in the plane of the fixed congruence associ-
ated with the parameter . We write the crank con- -
straint equation of the CC dyad for each of the three
positions and arrive at the following system of equa-
tions which determine the moment of the unknown
fixed line, ‘ '

[Plgo = b (11)
where,
(I - 1,)"
[Pl = | la—1)T (12)
gT
and,
-1B-1)-g
b = | -@-19)-g (13)
0
and finally,
sl o

are the coordinates of the moving line Ly in the ith
position. Eq. 11 can be solved to obtain the unknown



moment go. Thereby determining the fixed line Lg
corresponding to a choice of moving line Ly as,

welg

6 Numerical Considerations

Bottema and Roth (1979) have shown that the con-
gruences associated with four spatial positions are
(9, 3) congruences; nine lines(either real or imaginary)
of the congruence pass through a general point and
three lines(either real or imaginary) of the congruence
lie in a general plane. Moreover, they have shown
that at least one real line of the congruence passes
through a general point. Theoretically, there are an
infinite number of valid angles # of the parameteriz-
ing linkage which yield an infinite number of planes
of the congruence. Numerically, we can not generate
the complete congruence. In our formulation we gen-
erate a plane of the congruence for each value of the
parameter 8. Hence, by selecting a finite set of values
of § we do not generate the complete fixed and mov-
ing congruences and we do not know whether or not
the planes we have generated will pass though a gen-
eral point in space. We now present procedures for
determining the line in a congruence nearest to some
arbitrary point in space and for determining the lines
in a congruence closest to some arbitrary direction.

6.1 Determining the Line Nearest to
a Desired Point

We have shown that in order to uniquely determine
a 4C mechanism from the congruences four free pa-
rameters must be specified, two for each CC dyad.
In selecting a line from the congruences to define
a CC dyad it may be advantageous to seek a line
which passes nearest to some desired point. We now
present a procedure for determining these parameters
such that one of the lines of each of the dyads passes
through, or comes as close as possible to, a general
_point p. .
First, we determine the normal distance bk from a
plane 7 of the congruence to the desired point p. Sec-
ond, we determine h for each plane of the congruence
and identify the plane 7p,;, which minimizes h. Fi-
nally, we compute the line Lpin in 7min which is
closest to the desired point p. '

Let us define the direction and moment vectors of

the lines that define 7 as,

[ 1
Ly = 1§ (16)
and,
L1
Ly = 1%2, (17)

recall that 1; = 1. We chose to represent the plane
« by the implicit equation,

(P —Po) - n=0 (18)

where n is the normal vector to the plane, pg is a
given point in the plane, and p; is a general point in
the plane. From L; and Lo we determine n and pg
as, , ) o ,

_ (p2-p1)xh  (p2—p) XD
T ez —p1) x Ll T {I(P2 — P1) x L]

(19)

po=pi=h xHorpo=p2=lax1 (20)
The normal distance d from the origin to the plane 7

is,
d=po-n (21)

We can now express pyg in termé of d,
| po = dn (22)
and substitute into Eq. 18 to yield,
pr-n=d (23)

Eq. 23 yields an efficient method of determining if a
general point p lies in the plane 7. If p-n=d =,
where epsilon is some small tolerance value, then p
is said to lie in the plane 7. If p-n > d + ¢, then
p is said to lie in the right half-space defined by .
Similarly, if p -m < d — €, then p is said to lie in the
left half-space. Finally, the normal distance h from
the plane 7 of the congruence, defined by Ly and Lo,
to the desired point p is given by,

h=lp-n—d (24)

The next step is to compute h for each plane of the
congruence and identify the plane mp,;, which is clos-
est to the desired point p. Finally, we determine the
line Lyin of the congruence in i, which is closest
to the desired point p. Let us refer to the lines which
define i, as,

Ll—min = [l(}min ] (25)

1—min




and,

Loyemin = [ (26)

lmin J
10

—min

Since we know the direction l,,;, of the lines in the
plane i, that are in the congruence we need only
determine the moment of the unknown line Lnin. We
proceed by finding the point pypin in i, which is
closest to the desired point p.

Pmin =P - (p-n—d)n (27)
The unknown moment is then given by,
Pmin X lmin (28)

and the line Ly of the congruence that passes near-
est to the desired point p is,

[ lmin }
Pmin X lnin

6.2 Determining the Line Nearest to
a Desired Direction

(29)

Lmin

In selecting a line from the congruences to define a
CC dyad it may be advantageous to seek a line whose
direction is nearest some desired direction. We now
present a procedure for selecting such a line from a
congruence. ‘
Since every line of the congruence corresponding to
a value of the parameter 6 is parallel, we need only
determine the plane of the congruence in which the
lines are nearest to the desired direction s. Any line
in such a plane would suffice. First, we measure the
error e in direction associated with a plane 7 of the
congruence, corresponding to a value of 4 as,
e=1—|l-s|=1~]l-s] (30)
where 1; = 13 are the direction of the lines L; and
Ly which define the plane 7. We compute e for each
plane of the congruence and determine the plane 7,
which minimizes e. Any line in the plane m,,;, which
lies in the congruence is nearest the desired direction
and may be used to define a line of a CC dyad which
guides a body through the four prescribed positions.

7 Case Study

In this section we present an example of the design of
a spatial 4C mechanism for four position rigid body
guidance. The goal is to move a pallet off of a flexible
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(Pos. | X T Y | 7 [ Long. | Lat. | Reoll ]
1 0.00 | 0.00 | 0.00 00.0 00.0 | 00.0
2 0.00 | 1.00 | 0.25 15.0 15.0 | 00.0
3 1.00 | 2.00 | 0.50 45.0 60.0 | 00.0
4 2.00 | 3.00 1.0 45.0 80.0 | 00.0
Table 1: The 4 Prescribed Positions

assembly line into a convenient position to perform
an assembly operation on the underside of the pallet
and then to return the pallet to the assembly line.
A moving coordinate frame was assigned to the pal-
let and the 4C mechanism is to attach itself to the
pallet at the points; [—1 0.25 0]7 and [1 0.25 0]7. It
is at these two points that holes are to be drilled in
the pallet. These holes will serve as journal bearings
for the moving C joints of the 4C mechanism. This
application was suggested by Mark Senti and his as-
sociates at GSMA Systems Inc, Melbourne, FL. The
four desired positions are prescribed by the (X,Y,2)
coordinates of the origin of the moving frame and the
(Longitude, Latitude, Roll) angles which describe the
orientation of the moving frame with respect to the
fixed reference frame, see Tbl. 1. The fixed and mov-
ing congruences, shown in Fig. 3, were generated for
sequential values of 6 beginning at § = 0.0 and step-
ping in increments of 0.1rad = 5.73 deg. The values
of d chosen for computing the two lines for a given
value of § were d; = 1.0 and d» = 2.0.

From the computed congruences we seek a 4C
mechanism with a driving crank which has a moving
line that passes through the point Pavg = [-10.250]7
and a driven crank with a moving line that passes
through the point paws = [1 0.25 0]7; both points
are given with respect to the moving frame. First,
we determine the driving dyad. For each plane of the
moving congruence the distance & from the plane to
the point pg,, was computed. The plane correspond-
ing to 6 = 183.35 was found to be nearest the point
Pdvg, hmin = 0.032135, and the line in this plane
nearest to pgyg is,

0.79989
—0.59803
0.05039
0.01387
0.54772
0.42987

Hgyy (31)

The point on this line nearest to Pdvg 18 Pmin =
[~1.01924 0.22462 0.00426]T. The corresponding
fixed line of the CC dyad, whose moment was found




. Figure 4: The 4C Mechanism
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| Link | Length (deg, distance) |
DRIVING (25.81, 2.718)
COUPLER (7.73,0.668)
DRIVEN (—165.41, 1.219)
FIXED (4—161.19,2.112)

Table 2: The Desired 4C Mechanism

using three position synthesis, is,

0.93653
—0.23042
0.26423
0.569294
3.00646
0.52020

deg (32)

We obtain the driven dyad in an analogous manner.
The plane corresponding to 6 = 246.37 was found to
be nearest the point Pdvn; hmin = 0.019724, and the
line in this plane of the moving congruence nearest to
Pdvn is,

0.86004
—0.50927 — 0.03126
—0.01677
0.01674
—0.73418

Hdvn (33)

The point on this line nearest to Pdun 18 Pmin =
[1.00459 0.25880 — 0.01704]F. The corresponding
fixed line of the driven dyad is,

[ —0.95907 ]
0.27706
0.05847
—0.25088
~1.15251
1.34609 |

Finally, we show the resulting 4C mechanism in Fig. 4
and list its link lengths in Tbl. 2. In Fig. 4 the mech-
anism is shown with the moving body in position 4
and the lines which attach the moving body to the
mechanism are also shown.

Gdun (34)

8 Conclusion

In this paper we have presented a procedure for deter-
mining the fixed and moving congruences associated

with four finitely separated spatial positions. More- .

over, algorithms for selecting lines from the congru-
ences based upon two design criteria: selecting lines
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which pass through, or near, desired points and lines
which are nearest some desired direction, were de-
rived. The result is a design procedure for perform-
ing the kinematic dimensional synthesis of spatial 4C
mechanisms for four position rigid body guidance.
The design process was illustrated in a detailed exam-
ple. It is hoped that this procedure will facilitate the
creation of computer aided design software for spatial
4C mechanisms.
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