
their Table 1 classification. Continuity arguments developed for 
Watt linkages in Mirth and Chase (1995) can be extended to 
demonstrate that all linkages on a single segment must share 
the same circuit attributes of any single test linkage on that 
segment. Therefore, if a test linkage exhibits the circuit defect, 
the entire segment is deleted; otherwise, the entire segment is 
displayed. 

The Burmester curves are segmented by locating the transi­
tional linkages between Table 1 classifications. The transitional 
Unkage between any two possible adjacent classifications occur 
whenever the constituent four-bar coupler curve becomes tan­
gent to a limit circle. 

An example is illustrated in Fig. 3. The coupler curve and 
limit circles of Stephenson III linkage inversions corresponding 
to three consecutive ground pivot selections are highlighted. 
The first selection is a type "M2" linkage. The third is a type 
"S." Continuity requires the existence of the transitional second 
selection between them, where the coupler curve becomes tan­
gent to the outer limit circle. 

The curve sectioning procedure is implemented using logic 
parallel to that used for both four-bar and Watt circuit rectifica­
tion in Mirth and Chase (1995). The Table 1 classifications of 
approximately 1(K) trial linkages are determined at sequential 
locations along the Burmester curves. If the classification 
changes between two trials, the trial values before and after the 
change are used to define an interval of uncertainty containing 
the transitional linkage. The location of the transitional linkage 
is then refined with a bisection search. 

The implementation is completed by testing a single linkage 
within each segment for the circuit defect. Note that linkages 
from type " S " segments have one circuit, so test linkages are 
not required for these segments. 

Burmester curves for the external dyad typically have many 
more segments than their four-bar and Watt counterparts. Figure 

Pracision points on differant circuits 

Praclsion points on ths sams eircuH 

3 illustrates a very small portion of the overall centerpoint curve 
for an actual problem. The "M2" and "Z" segments included 
on this segment have been deleted due to the circuit defect. 

Conclusion 
This paper provides a method to prevent the circuit defect in 

any Stephenson linkage designed for four precision positions. 
The ability to characterize the different circuits numerically 
allows for the active incorporation of circuit analysis into the 
synthesis procedure. Combining this method with those of Mirth 
and Chase (1995) enables synthesizing any four-bar or six-bar 
linkage with a guarantee that the linkage can reach all precision 
positions without disassembly. 
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Planar Motion Synthesis Using an 
Approximate Bi-Invariant Metric 

P. Larochelle' and J. M. McCarthy^ 

In this paper we present a technique for using a bi-invariant 
metric in the image space of spherical displacements for design­
ing planar mechanisms for n (> 5) position rigid body guidance. 
The goal is to perform the dimensional synthesis of the mecha-

Fig. 3 Sample segment of the final centerpoint curve of a Stephenson 
III linkage rectified to prevent the circuit defect 
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nism such that the distance between the position and orientation 
of the guided body to each of the n goal positions is minimized. 
Rather than measure these distances in the plane, we introduce 
an approximating sphere and identify rotations which are equiva­
lent to the planar displacements to a specified tolerance. We then 
measure distances between the rigid body and the goal positions 
using a bi-invariant metric on the image space of spherical 
displacements. The optimal linkage is obtained by minimizing 
this distance for each of the n goal positions. 

1 Introduction 
The notion of a metric for measuring distances between 

two points in a plane, or two points in space, is quite 
intuitive. However, a metric that measures the distance be­
tween finite positions of a rigid body (its location and orien­
tation) is not. Furthermore, it is known that there is no 
distance measure which is independent of the choice of 
coordinate system in both the fixed and moving bodies, see 
Kazerounian and Rastegar (1992) and Duffy (1990). Because 
this distance measure is often used in the optimality criteria 
for linkage synthesis and robot motion planning procedures, 
it is undesirable to have it vary with the choice of coordi­
nates. We address this problem by introducing spherical 
approximation to the desired planar positions. A bi-invariant 
metric exists which can be used to measure the distances 
between these positions. The result is a design procedure 
which is bi-invariant to the order of the approximating sphere. 
Other work in the development of bi-invariant metrics for 
planning spatial and planar motions have focused on bound­
ing the volume of the moving body and are often dependent 
upon its shape, see Kazerounian and Rasetegar (1992). 

The paper proceeds as follows. First, we approximate 
planar rigid body displacements with spherical displacements 
and show that the error induced by such an approximation is 
of order 1/R^, where R is the radius of the approximating 
sphere. Second, we use a bi-invariant metric in the image 
space of spherical displacements to synthesize an optimal 
spherical AR mechanism. Finally, we identify the planar AR 
mechanism associated with the optimal spherical solution. 
The result is a planar AR mechanism that has been optimized 
for n position rigid body guidance using an approximate 
bi-invariant metric with an error dependent only upon the 
radius of the approximating sphere. Numerical results for ten 
position synthesis of a planar AR mechanism are presented. 

2 The Image Space of Spherical Displacements 
Spherical displacements are a special subset of general 

spatial displacements that consist of pure rotations. Spherical 
displacements may be represented by a 3 X 3 orthonormal 
rotation matrix which describes the orientation of the moving 
frame relative to the fixed frame. Associated with the matrix 
of rotation, [^4] = [a,y] (i, j = 1, 2, 3), is an axis of rotation s, 
and a rotation angle about the axis 6, which can be recovered 
from [/I] as follows. 

6 = arccos 
On + «22 + «33 - 1 

^32 '^23 

•̂  2 Sin 0 

^ «13 - ^31 

^^ 2 s ine 

2 sin e (1) 

Using the rotation axis s and the angle of rotation d we 
can represent a spherical displacement by the four dimen­
sional vector q, see Hamilton (1969), which we denote as a 

quaternion. The four coordinates of the quaternion, some­
times referred to as Euler parameters, are. 

9i 
0 

s, sin — 
" 2 

0 
Qi = s sin -

^3 = «z sin -

QA = cos — 
^ 2 

(2) 

Note that the components of the quaternion q satisfy the 
relation. 

GXq): qf + qi + qf + q}-1=0 (3) 

and lie on a unit hypersphere which we denote as the image 
space of spherical displacements. 

Given two quarternions, g and h, their product yields a 
quaternion which represents the spherical displacement ob­
tained by the successive application of the two given displace­
ments. We may write the product of two quarternions in the 
following matrix forms, see McCarthy (1990), 

gh=[g^]h = [h']g (4) 
where, 

[8'] = 

-g4 

gi 

-82 

and. 

[h-] = 

-g3 

84 

-82 

h. 

-h, 

82 81 

-81 82 

84 gi 

-83 84 

-hy h^ 

3 Approximating Planar Displacements 

We now examine how spherical displacements may be 
used to approximate planar displacements with some finite 
error associated with the radius R of the sphere. The ap­
proach used here is similar to the work of McCarthy (1983, 
1986) in which he examined spherical and 3-spherical mo­
tions with instantaneous invariants approaching zero and 
showed that these motions may be identified with planar and 
spatial motions, respectively. 

First, note that a general planar displacements, (a, b, if/), 
in the z = R plane of a point p = (x, yY may be expressed 
as a coordinate transformation, 

where, 

[ .̂] = 

{^\ 

cos 1// 

sin 1// 

0 

lx\ 

- s in 1// 

sin i/( 

0 

a 
b 
R 

(5) 

(6) 

Now consider a general spherical displacement in which 
the parameters used to describe the displacement are the 
three angles 9, <̂ , and 1// as defined in Fig. 1. We refer to 0 

Journal of Mechanical Design DECEMBER 1995, Vol. 1 1 7 / 6 4 7 

Downloaded 22 Jul 2010 to 163.118.202.41. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Now, if we consider only the displacement of points p = (x, 
y, R)^ in the z = R plane we may we rewrite Eq. (7) using 

Fig. 1 Coordinates for the spherical approximation to a planar 
displacement 

as the longitude, 4> as the latitude, and i/f as the roll of the 
position. Using these parameters a general spherical dis­
placement may be written as, 

Eq. (12) 

/^l 
V = 

U/ 
1 

^ R 

as, 

cos i/( 

sin i// 
0 

0 
0 

— a cos i// -

— sin ^ll 

cos i// 

0 

b sin i// 

a 

b 

R. 

[x\ 
y 

\ i / 

0 
0 

fl sin i/( - 5 

X 

cos 

\x\ 
y 
1 / 

If, -

+ 0 

0 
0 

{{a^ + b^) 

[^] ^''^ 

[As] 
lx\ 

where, 

[As] =Rot(y, e)Rot(x, ~(i))Rot{z, ip) 

Performing the matrix multiplication yields. 

(7) 

(8) 

We note that the first term of Eq. (13) is identical to the 
equation for general planar displacements, Eq. (5). More­
over, in the limit as 1/R -> 0 and (a, b, x, y) remain finite, 
spherical and planar motion are identical. Furthermore, we 
note, to the first order that the spherical motion differs from 
the motion in the z = R plane only in the z direction. 

From our derivation and analysis of Eq. (13) we conclude 
that spherical displacements may be used to approximate 
planar displacements with some finite error which is associ­
ated with the radius of the sphere. The procedure used to 
approximate a planar displacement, (a, b, ip), with a dis­
placement on a sphere of radius R is as follows. Examining 
the first term of Eq. (13) we make the following identifica­
tions, 

[As]-

cos 6cos Ip - sin 6 sin (̂  sin i/* — cos 6 sinip - sin 0 sin (f> cos ip sin 6 cos </> 
cos 6 sin ip cos (j> cos tp sin (p 

- sin 0 cos i/> - cos 0 sin </> sin ip sin 9 sin i/( - cos 6 sin (p cos ip cos 6 cos </> 
(9) 

We now define a as the longitudinal arc length and b as 
the latitudinal arc length so that, a = Rd and b = Rep. 
Solving for the angles we obtain, 

<!> = 

a 

R 

b 
(10) 

b ^ b 

ip<^ ip (14) 

Finally, using the definition of the arc lengths, Eq. (10), and 
the radius of the sphere we obtain the three angles; d, <p, and 
Ip, which describe the spherical displacement on the sphere 
of radius R that approximates the prescribed planar motion. 

We now expand the trignometric functions sine and cosine 
using a Taylor series about 0, 

1 . 1 , sin(jr) =x- —x^ + —x= 

cos(x) = 1 
1 

2T' 
-I- —x^ (11) 

^ R 

(15) 

Substituting the angles 9 and (p from Eq. (10) into the 
expansions Eqs. (11) we are able to rewrite Eq. (9) as. 

[As] = 

cos Ip 

sin Ip 

0 

— sin Ip 

cos Ip 

0 

1 

^ R - a cos Ip — bsin Ip dsin ip ~ b cos ip 

+ 0 

0 
0 

A R ) 

1 
(12) 

4 The Metric 

The metric in the image space that we use was proposed 
by Ravani and Roth (1983) for synthesizing planar, spherical, 
and spatial mechanisms for rigid body guidance. Each posi­
tion of a rigid body maps to a corresponding point in the 
image space. McCarthy (1990) shows that if the displacement 
is a general spatial one, the mapping is to the image space of 
spatial displacements, if the displacement is planar to the 
image space of planar displacements, and spherical displace­
ments map to the image space of spherical displacements. 
Let the two image points of a rigid body displacement be 
denoted by q, and q2 and let us define the vector u = (q, -
qj). The measure d of the distance between the two posi­
tions is defined as follows. 

648 / Vol. 117, DECEMBER 1995 Transactions of the ASME 

Downloaded 22 Jul 2010 to 163.118.202.41. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



^2 = u^u = ( q , - q 2 ) ^ ( q i - q2 ) (16) 

We now consider a different position of the fixed reference 
frame described by the image space point q̂ r. As viewed 
from the new fixed reference frame the positions are, 

Table 1 Ten planar positions (a, b, i^), the approximating spheri­
cal positions, and the spherical design error 

q'l = qfQi = Urhi 

q'2 = q^qa = [ciphi (17) 

Next, we compute the distance between the two positions 
when referenced to the fixed frame at a general position q^. 
By substituting Eq. (17) into Eq. (16) we arrive at. 

d'= u^[q;Y[q*r]» (18) 

For planar and spatial displacements, [q^Vigp] ¥- [I] and 
the metric is not invariant under a change of fixed frame 
coordinate system. However, in the image space of spherical 
displacements we have, from Eq. (3) and Eq. (4), that 
[qFVl(lF] = U] for all q^, see McCarthy (1990). Therefore, 
the distance obtained in Eq. (18) is identical to that obtained 
in Eq. (16) and we see that the metric is invariant to multipli­
cation on the left, i.e., left invariant. Similarly, suppose q, 
and q2 are measured with respect to a moving frame. We 
now examine a change in the position of the moving frame 
described by the image space point q̂ .̂ As viewed from the 
new moving reference frame the positions are, 

q'i = qiqM = [ ^ w k i 

q2 = q2qM = [?M]q2 ( i9) 

We compute the distance between the two positions by 
substituting Eq. (19) into Eq. (16) and arrive at. 

U ^ [ ? M ] ^ [ 9 M ] " (20) 

Again, we have that [q^YlgM^ = [/] for all q̂ ^̂  and con­
clude that the metric, given by Eq. (16), in the image space of 
spherical displacements is both left and right invariant, or 
bi-invariant. That is to say, our measure of the distance 
between two positions in the image space of spherical dis­
placements is independent of the choice of coordinate system 
used. For a more general discussion of metrics and norms see 
Chapter 10: Computational Kinematics, edited by K. C. Gupta 
in Erdman (1992). 

5 The Design Procedure 

First, determine the spherical positions which approximate 
the n desired positions of the rigid body by using Eq. (15) 
and Eq. (9). The next step in the procedure is to synthesize a 
spherical mechanism which guides a rigid body through the 
spherical positions which approximate the n desired posi­
tions of the moving body in the plane. 

The synthesis procedure used to perform the n position 
spherical 4R rigid body guidance problem was presented by 
Bodduluri and McCarthy (1992), and Ravani and Roth (1983). 
The procedure first approximates the point on the constraint 
manifold of the mechanism which is closest to the desired 
point in the image space. The metric, given by Eq. (16), is 
used to measure the distance from this point on the con­
straint manifold to the desired point in the image space. An 
optimization problem is then formulated to vary the design 
parameters of the mechanism such that they minimize this 
distance for each of the n desired positions. The result is a 
spherical AR mechanism whose design variables have been 
optimized such that all of the prescribed positions are either: 
(i) in the constraint manifold, or, (2) the constraint manifold 
has been shaped such that it comes as close as possible to all 
of the desired positions. Once the optimal spherical mecha­
nism has been found the final step of the design process is to 

Pos. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

a 
0.0 
4.5 
8.5 
13.0 
13.0 
9.5 
5.0 
1.0 

-1.0 
-1.5 

b 
0.0 
4.0 
8.0 
11.5 
12.5 
14.0 
13.5 
10.5 
6.5 
3.0 

0 
40.0 
20.0 
0.0 

-30.0 
-35.0 
-35.0 
-30.0 
-15.0 

0.0 
20.0 

Long. 
0.000 
2.578 
4.870 
7.448 
7.448 
5.443 
2.864 
0.572 

-0.572 
-0.859 

Lat. 

0.000 
2.291 
4.583 
6.589 
7.161 
8.021 
7.734 
6.016 
3.724 
1.718 

Roll 
40.000 
20.000 
0.000 

-30.000 
-35.000 
-35.000 
-30.000 
-15.000 

0.000 
20.000 

Error 
1.07£;-5 
3.36E-5 
1.93£-5 
1.01£;-5 
2.67£;-5 
3.91£-6 
6.47£-6 
6.14£;-6 
1.90^-5 
l . lOB-1 

E = 1.47£;-4 

obtain the planar AR mechanism associated with the spheri­
cal 47? mechanism by using Eq. (15). 

6 Case Study 
We now present an example of the design of a planar 4R 

mechanism for n = 10 positions. The 10 desired positions are 
listed in Table 1. These are the same 10 positions that were 
used by Ravani and Roth (1983) to demonstrate their planar 
synthesis procedure. Based upon the coordinates of the de­
sired positions we choose to limit the design space to a 
52 X 52 square; (4 X 13 = 52). That is to say we limit the 
mechanism search space to this planar area such that the 
moving and fixed axes, as well as the rigid body being guided, 
are always within this area. Limiting the angles 0 and 0 
about the z axis to; -15 <, 0 < 15 and -15 < <̂  < 15, we 
now compute the radius of the approximating sphere, 

R = 
52 

30-
7T 

180 

= 100 (21) 

The longitude, latitude, and roll of the spherical positions 
which approximate the desired planar positions are found in 
Table 1. Furthermore, the error measure indicating how 
closely the spherical 4i? mechanism guides the body through 
each of the spherical positions is also listed in Table 1. The 
result of the spherical optimization is the location (longitude 
and latitude) of the fixed and moving axes of the spherical 
mechanism. Using Eq. (15), we obtain the locations of the 
planar axes which are associated with the spherical mecha­
nism. The driving crank has its fixed axis at (13.98, -2.53) 
and its moving axis at (10.23, -4.66). The driven crank has 
its fixed axis at (6.57, 1.12) and its moving axis at (2.66, 
-7.84). Note that the locations of the fixed axes are given 
with respect to the fixed frame while the locations of the 
moving axes are given with respect to the moving reference 
frame. The length of the fixed and the coupler links are 
found by computing the linear distance between the fixed 
and moving axes, respectively. To determine the crank lengths 
of each dyad we use Eq. (15) to recover the linear distance 
between the fixed and moving axes of the planar linkage 
from the angular length of the corresponding spherical crank. 
The four link lengths of the mechanism are listed in Table 2. 

Table 2 Planar llnl< lengths obtained using the spherical approxi­
mation before and after the coordinate change 

Link 
DRIVING 
COUPLER 
DRIVEN 
FIXED 

Length(orig) 
6.869 
8.204 
5.187 
8.267 

Length(trans) 
6.864 
8.204 
5.188 
8.277 
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Fig. 2 Coupler curves obtained using Ravani's method (dotted) Fig. 3 Coupier curves obtained after a coordinate change: Ravani's 
and the spherical approximation (solid) method (dotted), the spherical approximation (solid) 

In order to verify the design we use an approach presented 
by Suh and Radcliffe (1978) which utilizes the crank con­
straint equation for a planar RR dyad. We substitute the 
fixed and moving axes of the mechanism into the crank 
constraint equation and solve for the crank length. If the 
mechanism passes exactly through all of the positions then 
the crank length should remain constant. The results of the 
verification are the standard deviation of the 10 crank lengths 
obtained from the crank constraint equation. The standard 
deviations of the driving and driven crank lengths are 0.560 
and 0.288, respectively. For the sake of comparison we in­
clude the results of the verification of the solution presented 
by Ravani and Roth (1983) to the same 10 positions using the 
metric given by Eq. (16) in the image space of planar dis­
placements, which you may recall is not bi-invariant. The 
standard deviations of the driving and driven crank lengths 
for the solution presented by Ravani and Roth are 0.157 and 
0.739, respectively. Note that the sum of the standard devia­
tions for the spherical approximation solution, 0.8481, is less 
than that for Ravani and Roth's solution, 0.8959. The link 
lengths of the planar synthesis solution are listed in Table 3. 
The ten desired positions and the coupler curves for both the 
spherical approximation solution (.solid) and the planar ap­
proximation solution (dotted) are shown in Fig. 2. 

We now illustrate the coordinate frame dependency of 
Ravani and Roth's planar synthesis procedure. In Ravani and 
Roth (1983) the synthesis problem is reduced to minimizing 
the following Lagrangian function, 

L(u, A) = u^u -H A^([7]u-v) (22) 

Allowing for a change of the fixed frame coordinates the new 
Lagrangian function becomes, 

L(u, A) = n^q'.nqn^ + A^([^][?;]u - v) (23) 

Similarly, for a change of the moving frame coordinates the 
Lagrangian function becomes, 

L(u, A) = u^[q^f[q-^]u + \^[J][q-^]u - v) (24) 

Table 3 Planar link lengths obtained using Ravani's method be­
fore and after the coordinate change 

Link 
DRIVING 
COUPLER 
DRIVEN 
FIXED 

Length(orig) 
5.070 
10.00 
8.310 
7.540 

Length(trans) 
4.802 
8.042 
7.245 
6.772 

Using arguments similar to those in our discussion of the 
metric it is evident that the designed linkage would depend 
upon the choice of coordinates. 

We now demonstrate the approximate bi-invariance of our 
approach. We translate the 10 desired positions — 5.0 in both 
the X and y directions while maintaining their orientations 
and compare the results for both the planar synthesis method 
of Ravani and Roth and the spherical approximation method 
presented here. Using the spherical approximation approach 
we yield a solution to the translated positions which is nearly 
identical to the previously determined solution of the un­
translated position problem. For the spherical approximation 
approach, the link lengths for both the original solution and 
the solution to the translated positions are listed in Table 2. 
Using the planar synthesis technique of Ravani and Roth we 
yield the linkage with the link lengths listed in Table 3. We 
note that the link lengths have changed for the planar synthe­
sis approach but that the link lengths obtained by using the 
spherical approximation approach are nearly identical to 
those found for the original choice of coordinates. For visual 
comparison, in Fig. 3 we plot the coupler curves to the 
spherical approximation solution (solid) and the planar syn­
thesis solution (dotted). Note that the coupler curve for the 
spherical approximation is the same in both Figs. 2 and 3 
while the curve for the planar synthesis solution is not. 
Similar results were obtained for a change in coordinates of 
the moving frame. 

7 Conclusions 
In this paper we present a design technique that uses 

spherical displacements to approximate planar displacements 
so an optimality criterion can be employed that is invariant to 
the choice of coordinate system. We choose the radius of the 
approximating sphere in accordance with selected bounds on 
the operational space of the design. We show that the error 
induced by the spherical approximation of planar motions is 
of the order 1/R^, where R is the radius of the sphere. 
Moreover, we demonstrate our technique by synthesizing a 
planar 4R mechanism for 10 precision positions and show 
that a coordinate transformation of - 5.0 in both the x and y 
directions introduces a change in link lengths of less than 
0.13 percent. 
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Quadri-directional Air Thrusters for 
Free-floating Robot Applications 

N. Batsios/ M. Annapragada,' and 
Sunil Kumar Agrawal^ 

This paper describes the operational theory and design of a 
quadri-directional air thruster ( "quad" ) for propulsion of the 
free-floating robot of Ohio University. In this design, the air is 
drawn from a central air tank and routed to four nozzles of a 
quad thruster via a pressure regulator, a distribution manifold, 
four solenoid valves, and a quad manifold. The pressure regula­
tor is controlled by a d.c. servomotor and the solenoid valves 
are turned on/off using the digital output ports of the computer. 
The performance characteristics of this quad thruster were de­
termined experimentally. The experimental measurement of the 
thrust as a function of the regulated pressure shows a good 
match with the data predicted by the supporting theory. 

1 Introduction 
Over the last two decades, a number of analytical and experi­

mental studies have been reported on free-floating space robots 
[3] , [1], [5] . In an effort to understand robotic assemblies in 
a zero gravity space environment, a free-floating robot facility 
is being developed at Ohio University with a dual-arm plansir 
robot equipped with thrusters. Regulated supply of air floats the 
robot on a granite surface. Two quad-thrusters are mounted on 
the base to propel the robot with servomotor controlled pressure 
regulators to direct the air to the nozzles of the quad thruster. 

Even though a number of aspects of the analytical work and 
experimental setup could be of interest to the reader, this paper 
addresses the aspects of design of the quadridirectional thruster. 
This paper is organized in the following way. The operational 
theory of the air thruster is outlined in Section 2. The experiment 
setup and the results are described in Section 3. These are 
followed by conclusions. 
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2 Operational Tlieory 
Consider a reservoir (/•) that discharges air through the outlet 

(o) of a converging nozzle into the atmosphere. For ideal gases, 
under the condition of isentropic flow, using continuity and 
conservation of energy [4] , it can be shown that the ratio of 
the outlet and reservoir pressures is: 

(1) 

where Pn = P,„„,, y = 1.4 for air, and M is the Mach number 
of air flow at the outlet. The ratio of the outlet temperature and 
reservoir temperature is given by the following equation: 
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The velocity of air V„ at the outlet is V„ = M iyRTo and the 
density ratio is given by 
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The thrust, F, generated by the air flow is 

F = 
RT, 

(3) 

(4) 

Once the reservoir pressure is measured, the Mach number of 
the air flow can be computed from Eq. (1) , To from Eq. (2), 
and the thrust from Eq. (4). 

The outlet velocity of the air flow from a converging nozzle 
never exceeds the velocity of sound. When the Mach number 
of air flow at the outlet becomes one, the flow is said to be 
choked. On substituting M = 1 in the above equations, we get: 

(5) 
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The thrust, F, generated by the air flow is 

F = (p„VoAo)y„ = 
PrA^Vl 

RT, 

y + 1 

2 V''' 
(6) 

where Ao is the area of the outlet nozzle, Vo is the outlet velocity 
of the air equal to the speed of sound, and R is the universal 
gas constant. 

Mark's Handbook [2] modifies the volumetric flow rate of 
air through the outlet computed in the last two paragraphs in 
the following way: 

= CEYQ,, (7) 

where C is a coefficient based on Reynold's number of the fluid 
flow, E is dependent on the ratio of inlet and outlet areas of the 
nozzle, and F is a function of the ratio of reservoir to outlet 
pressure and ratio of the inlet and outlet areas of the nozzle. 
Hence, the outlet thrust of the nozzle according to Mark's Hand­
book scales the theoretical thrust by the constant CEY. 

A plot of the outlet velocity as a function of reservoir pressure 
is shown in Fig. 1. From this plot, we observe that the velocity 
of the outlet air becomes a constant once the reservoir achieves 
a critical pressure for the choked flow. Figure 2 shows a plot 
of the thrust as a function of the reservoir pressure based on 
the operational theory for an outlet diameter of the nozzle. 
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