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ABSTRACT
In this paper we present a novel dimensional synthesis tech-

nique for approximate motion synthesis of spherical kinematic
chains. The methodology uses an analytic representation of the
spherical RR dyad’s workspace that is parameterized by its di-
mensional synthesis variables. A two loop nonlinear optimiza-
tion technique is then employed to minimize the distance from
the dyad’s workspace to a finite number of desired orientations
of the workpiece. The result is an approximate motion dimen-
sional synthesis technique that is applicable to spherical open
and closed kinematic chains. Here, we specifically address the
spherical RR open and 4R closed chains however the methodol-
ogy is applicable to all spherical kinematic chains. Finally, we
present two examples that demonstrate the utility of the synthesis
technique.

INTRODUCTION
The novel dimensional synthesis technique presented uti-

lizes an analytic representation of the spherical RR dyad’s
workspace that is parameterized by its dimensional synthesis
variables. The parameterized workspace represents the geomet-
ric constraint imposed on the motion of the moving body or
workpiece. This constraint is a result of the geometric and kine-
matic structure of the dyad; e.g. its length and the location of its
fixed and moving axes (i.e. lines). The workspace is an analytical
representation of the workspace of the dyad that is parameterized
∗Address all correspondence to this author.
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by the dyad’s dimensional synthesis variables. Here we derive
the parameterized workspace of spherical RR dyads using 3×3
elements of SO(3) (also known as rotation matrices) and utilize
this representation to perform dyadic dimensional synthesis for
approximate rigid body guidance.

The derivation of the parameterized workspace involves
writing the kinematic constraint equations of the dyad using ho-
mogeneous coordinate transformations. The result is an analyt-
ical representation of the workspace of the dyad that is param-
eterized by its joint variables. The synthesis goal is to vary the
design variables such that all of the prescribed locations are ei-
ther: (1) in the workspace, or, (2) the workspace comes as close
as possible to all of the desired locations. Recall that in general
five is the largest number of locations for which an exact solution
is possible for the spherical RR dyad, see [1, 2].

In related works, kinematic mappings have been used to de-
rive the constraint manifold representation of the kinematic con-
straint equations. The derivation of the constraint manifold in-
volves writing the kinematic constraint equations using the im-
age space representation of displacements, see [3], [4], and [5].
In [6] the constraint manifold of the spherical RR dyad is used
to solve the 5 orientation Burmester problem. Previous works
discussing constraint manifold fitting for an arbitrary number of
locations include [7], [8], [9], and [4]. All of these works em-
ploy implicit representations of the dyad constraint manifolds.
The constraint manifolds, that are known to be highly nonlin-
ear [10], are approximated by tangent hyperplanes by using a
standard Taylor series linearization strategy. The distance from
Copyright c© 2007 by ASME
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Figure 1. A SPHERICAL RR OPEN CHAIN.

the approximating tangent plane to the desired location is then
used to formulate an objective function to be minimized. These
efforts met with limited success since the constraint manifolds
are highly nonlinear and the approximating tangent planes yield
poor measures of the distance from the constraint manifold to the
desired locations, [11] and [4]. In [12, 13] work that addressed
the synthesis of planar RR dyads via parameterized constraint
manifold fitting was reported. Here we build upon that work
and utilize parameterized workspaces and employ nonlinear opti-
mization to yield a general numerical dimensional synthesis tech-
nique for approximate motion synthesis.

We proceed by deriving the parameterized workspaces of
spherical RR open and 4R closed kinematic chains. This is fol-
lowed by the kinematic analyses utilized to yield closed-chain
design solutions that do not suffer from circuit defects. Finally,
we present the general approximate motion synthesis procedure
and two numerical examples.

SPHERICAL RR WORKSPACE
In this section we derive the parametric form of the

workspace of the spherical RR dyad. The workspace is derived
by expressing analytically the geometric structure that the joints
of the dyad impose on the moving body. Using 3× 3 rotation
matrices and the geometric constraint equations of the dyad we
arrive at a representation of the workspace that is parameterized
by the dimensional synthesis variables of the dyad.

The RR dyad, shown in Fig. 1, is a two degree of freedom
open chain with one fixed R joint, one moving R joint, and whose
link length is given by the angle α between the two joint axes.
The fixed R joint is located by u measured with respect to the
fixed frame F and the moving frame M is given by v measured
with respect to a frame attached to the floating link whose origin
is at A. The displacement from the fixed frame F to O is given by
the vector u, where u = [ulong ulat ]

T are the longitude and latitude
angles that orient u with respect to F. The displacement from A
to M is similarly given by the vector v, where v = [vlong vlat ]T .
The forward kinematics of the spherical RR dyad from the fixed
frame F to the moving frame M may be written as:

F
M [R] =

[
roty(ulong)

]
[rotx(−ulat)] [rotz(θ)] . . .

[roty(α)] [rotz(φ)]
[
roty(vlong)

]
[rotx(−vlat)] (1)

where, roty, rotx, rotz are elements of SO(3) representing rota-
tions about the Y, X, and Z axes respectively. Note that the joint
variables of the dyad are θ and φ. The remaining parameters in
Eqn. (1) are the dyad’s dimensional synthesis variables. We now
group these variables and define the design vector r for the spher-
ical RR dyad as: r = [ulong ulat α vlong vlat ]T . Finally, for a given
dyad defined by r, the parameterized workspace ϒ from the fixed
frame F to the moving frame M may be written as:

ϒ(θ,φ) =
[
roty(ulong)

]
[rotx(−ulat)] [rotz(θ)] . . .

[roty(α)] [rotz(φ)]
[
roty(vlong)

]
[rotx(−vlat)] . (2)

SPHERICAL 4R WORKSPACE
In this section we derive the parametric form of the

workspace of the spherical 4R closed chain, also known as the
spherical four-bar mechanism. A spherical 4R mechanism con-
sisting of two RR dyads, one of length α the other β, is shown
in Fig. 2. We proceed in a manner similar to that taken for the
spherical RR dyad and derive the parameterized workspace of
the spherical 4R mechanism.

The 4R mechanism is a one degree of freedom closed chain
with two fixed R joints and two moving R joints. The fixed R
joints are located by u1 and u2 measured with respect to the fixed
frame F and the moving frame M is given by v measured with
respect to a frame attached to the floating link whose origin is
on the moving axis of dyad #1 and whose z axis is aligned with
the joint axis. We define a fixed frame G such that its z-axis is
along u1 and its y-axis is orthogonal to the u1 and u2 plane. The
transformation from the fixed frame F to G is then given by,

[G] = [x̂ ŷ ẑ] (3)

where,

ẑ = u1
2 Copyright c© 2007 by ASME
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Figure 2. A SPHERICAL 4R CLOSED CHAIN.

ŷ = u1×u2

x̂ = ŷ× ẑ

The forward kinematics of the spherical 4R mechanism from the
fixed frame F to the moving frame M may be written as:

F
M[R] = [G] [rotz(θ)] [roty(α)] [rotz(φ)] . . .[

roty(vlong)
]
[rotx(−vlat)] [rotz(ζ)] (4)

Note that the single joint variable of the mechanism is θ since
φ is a known function of θ from the kinematic analysis of the
closed chain, see [1]. The remaining parameters in Eqn. (4)
are the dyad’s dimensional synthesis variables. We now group
these variables and define the design vector r for the spherical
4R mechanism as: r = [u1

T u2
T α η β vlong vlat ζ]T . Finally, for

a given mechanism defined by r, the parameterized workspace ϒ
from the fixed frame F to the moving frame M may be written
as:

ϒ(θ) = [G] [rotz(θ)] [roty(α)] [rotz(φ)] . . .[
roty(vlong)

]
[rotx(−vlat)] [rotz(ζ)] . (5)

METRIC ON SO(3)
In order to perform the approximate motion synthesis we

require a metric on SO(3) to define the distance between ele-
ments of the workspace of the chain and the desired orientations.
3

Start

Select candidate design

r

Design is complete

Acceptable ?

 Σ dmin 

Outer Optimization Loop

( Constrained Non-Linear Optimization ) 

 Σ dmin  and r

Select a better candidate design

r

Calculate Σ dmin 

No

Yes

End

Inner Optimization Loop

Determine  dmin  for each of the desired locations 

Figure 3. FLOW CHART.

Many useful bi-invariant metrics on SO(3) have been proposed,
see [4, 7, 14–19]. Here, we chose to use the metric proposed
in [20] where the distance d between two elements [A1] and [A2]
of SO(3) is defined by,

d = ‖[I]− [A2][A1]
T‖F (6)

where F denotes the Frobenius norm.

APPROXIMATE MOTION SYNTHESIS
The design problem can be stated as follows: given a finite

set of n desired orientations the task is to determine the open
or closed chain that guides the work piece through, or as close as
possible, to these orientations. Our approach is to utilize the met-
ric discussed above to determine the distance from the workspace
to each of the n desired locations, sum these distances, and then
to employ nonlinear optimization techniques to vary the dimen-
sional synthesis parameters such that the total distance is mini-
mized. We utilize a two loop optimization approach, see Fig. 3.
Copyright c© 2007 by ASME



Table 1. FOUR DESIRED ORIENTATIONS.

# Long Lat Roll

1 −35.0 35.0 90.0

2 30.0 37.0 30.0

3 15.0 50.0 45.0

4 −15.0 45.0 90.0

Inner Optimization Routine
For a given design r the inner loop optimization seeks

to determine the joint angles such that the distance from the
workspace to the n desired rigid body orientations is minimized.
An exhaustive direct search of the parameterized workspace is
performed utilizing Eqn. (6). Note that in the case of the RR
dyad the joint space is two dimensional and in the case of the
4R closed chain it is one dimensional. Hence, exhaustive direct
searches over the parameterized workspace are also only one or
two dimensional. The result of the exhaustive direct search is
the minimum distance dmin from the workspace to each of the n
desired orientations.

Outer Optimization Routine
The outer optimization routine seeks to find the dimensional

synthesis variables (i.e. r) that minimizes the sum of the dis-
tances to each of the desired orientations. We utilize the con-
strained nonlinear minimization routine fmincon() from the
MATLAB Optimization Toolbox. Constraints are used to im-
pose conditions on the geometry of the chain, for instance on
the link lengths, fixed axis locations, joint limits, etc. Con-
straints may also used to restrict closed chain designs to a de-
sired type of mechanism such as a Grashof crank-rocker. More-
over, constraints may be added to avoid circuit defects. This is
easily accomplished since a parameterized representation of the
workspace is being utilized. At each iteration of the outer opti-
mization loop the candidate design r is analyzed to determine if
it is Grashof or not. For Grashof mechanisms the inner optimiza-
tion is performed twice, once for each circuit. For each circuit
the sum of the dmin is determined. The circuit with the minimum
sum is utilized to determine if the design is acceptable or not.

EXAMPLE: SPHERICAL RR DYAD
Here, we perform the dimensional synthesis of a spherical

RR dyad to reach four desired orientations defined in Tab. 1 and
shown on the design sphere in Fig. 4 where orientations [A] have
been defined using the longitude, latitude, and roll convention:
[A] = [roty(long)] [rotx(−lat)] [rotz(roll)]. The initial guess and
the optimized parameters obtained are shown in Table 2. The
joint angles for the synthesized dyad and the distances associated
Figure 4. FOUR DESIRED ORIENTATIONS.

Table 2. THE OPTIMAL RR DESIGN.

Parameter Initial Guess Solution

ulong 25 1.8761

ulat 25 5.2349

α 70 19.9748

vlong 20 20.3284

vlat 20 18.9405

Table 3. JOINT PARAMETERS AND DISTANCES.

# θ φ dmin

1 156.0 280.0 0.0001

2 16.9 16.0 0.0002

3 59.0 346.5 0.0111

4 82.7 −6.5 0.065

∑ = 0.0763

with the various orientations are shown in Tab. 3. Fig. 5 shows
the optimal design. The path shown is a linear interpolation of
the joint angles θ and φ through the desired orientations.
4 Copyright c© 2007 by ASME



IMAL RR DESIGN.
Figure 5. THE OPT

EXAMPLE: SPHERICAL 4R MECHANISM
Here we design a 4R mechanism to reach six desired orienta-

tions defined in Tab. 4 and shown on the design sphere in Fig. 6
The optimized parameters obtained for this case are shown in
Tab. 5. The joint angles for the synthesized 4R mechanism and
the distances associated with the orientations are shown in Tab. 6.

Fig. 7 shows the optimal design. The path shown is the cou-
pler curve for the 4R mechanism. The spherical 4R mechanism
is a crank-rocker that attains all the desired orientations in a sin-
gle circuit and thus does not suffer from a circuit defect. Fig. 8
shows the design nearest the fifth orientation.
5

CONCLUSIONS
In this paper we have presented a novel dimensional syn-

thesis technique for approximate motion synthesis of spherical
kinematic chains. The methodology uses an analytic representa-
tion of the spherical RR dyad’s workspace that is parameterized
by its dimensional synthesis variables. A two loop nonlinear op-
timization technique is then employed to minimize the distance
from the dyad’s workspace to a finite number of desired orien-
tations of the workpiece. The result is an approximate motion
dimensional synthesis technique that is applicable to spherical
open and closed kinematic chains. Though the cases of spherical
Copyright c© 2007 by ASME



Figure 6. SIX DESIRED ORIENTATIONS.
RR open and 4R closed chains were addressed specifically, the
methodology is applicable to all spherical kinematic chains. Two
examples that demonstrated the utility of the synthesis technique
were presented.
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