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ABSTRACT
In this paper we present a novel methodology for orientation

order analysis of spherical RR dyads. The methodology is a
spherical generalization of the recent works of Myszka, Murray,
and Schmiedeler for assessing position order of planar RR dyads.
The objective of the methodology is to determine if a prescribed
fixed axis location for a spherical RR dyad will result in the dyad
guiding a moving rigid-body through a set of finitely separated
spherical orientations in the desired order (e.g. 1, 2, 3, 4, etc.).

First, the prior works on the order analysis of planar RR
dyads via the propeller method are briefly reviewed. Next,
the planar propeller methodology of Myszka, Murray, and
Schmiedeler is extended to yield a spherical hoop methodology.
The result is a useful tool to determine if a given spherical RR
dyad will guide a moving body through a set of prescribed
orientations in the desired order. Finally, we demonstrate the
utility of the hoop method for order analysis of spherical RR
dyads in three case studies.
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INTRODUCTION

The objective of this effort is to devise a methodology to
determine whether a given prescribed fixed axis of a spherical RR
dyad guides a rigid body through n desired spherical orientations
in the desired order (1, 2, 3, 4 . . .). The motivation derives
from commonly encountered kinematic dimensional synthesis
challenges. A common mechanism or linkage design objective
is the dimensional synthesis to solve rigid-body guidance tasks
[1]; also known as motion generation tasks [2]. In such cases
the objective is to determine the geometric parameters that
define the mechanism such that the mechanism guides a moving
body through a sequence of finitely separated locations in a
desired order. Often kinematic synthesis algorithms for motion
generation tasks yield large sets of candidate solutions that must
be analyzed for motion defects; see SYNTHETICA by Su et.
al. [3], LINCAGES by Erdman [4], SPHINX by Larochelle et.
al. [5], and SPHINX-PC by Ruth and McCarthy [6]. Common
motion defects encountered when using such software tools
include order, circuit, and branch defects [7]. In a one degree
of freedom mechanism, such as planar and spherical four-bars,
the mechanism suffers from an order defect when unidirectional
motion of the input or driving link does not guide the moving
body through the prescribed locations in the desired order. Here
we present a novel hoop method for analyzing spherical RR
dyads and four-bar mechanisms for order defects. The hoop
method [8] is derived from the propeller method; an earlier work
done on the order analysis of planar mechanisms by Myszka,
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Murray, and Schmiedler [9, 10].
Subsequent to Chase and Mirth’s work on defining and

classifying motion defects [7], Balli and Chand [11] provided
a comprehensive overview of linkage defects i.e. order, branch,
and circuit defects. Filemon [12] presents graphical construction
techniques for four position synthesis that identify regions of
the design solution space that are free from order and circuit
defects. Moreover, Filemon showed that in the case of four-
bar mechanisms order defects are directly related to the driving
(or input) dyad and are independent of the driven (or output)
dyad. Hence the spherical RR dyad order analysis methodology
presented here is directly applicable to the order analysis of
spherical four-bar mechanisms. Additional works examining the
order analysis for both planar and spherical mechanisms can be
found in [9, 10, 13–19].

Recently Myszka, Murray, and Schmiedeler [9, 10] pre-
sented a new approach to determine whether a planar RR dyad
will guide a moving body through a set of finitely separated
positions in the desired order. Their methodology, the propeller
method, utilizes relative crank angles and relative displacement
poles to check the order of finitely separated planar locations
associated with a prescribed fixed pivot G of a planar RR
dyad. Here their theoretical work on order analysis of planar
mechanisms is reviewed and extended to spherical mechanisms
and we introduce the hoop method. For a given set of finitely
separated spherical orientations and a spherical RR dyad with
fixed axis G the hoop method utilizes the relative displacement
axes of rotation to analyze the dyad for order defects.

THE PROPELLER METHOD
A kinematically elegant and geometrically intuitive ap-

proach for the order analysis of planar mechanisms, entitled the
propeller method, was recently presented by Myszka, Murray,
and Schmiedeler [9, 10], see Figure 1. First we summarize the
implementation of the propeller method and then we review the
derivation of the methodology.

A planar RR dyad consists of three bodies (the ground,
link, and moving body) connected serially by two revolute
joints. For a given planar RR dyad with fixed pivot G and a
set of n desired locations for the moving body to be guided
through the propeller method is implemented as follows. First
an infinitely long line, referred to as the propeller, is defined.
The propeller initially passes through the fixed pivot G and the
relative displacement pole P12 and is then rotated in a counter-
clockwise or clockwise direction (corresponding to the direction
of motion of the dyad) for π radians. The order in which
the dyad guides the moving body through the desired locations
is established by tracking the sequence in which the propeller
intersects the relative displacement poles associated with the
n desired locations. Myszka, Murray, and Schmiedeler [10]
show that for the dyad to guide the moving body through four
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Figure 1. PROPELLER METHOD

locations in numerical sequence that the propeller must intersect
the relative displacement poles in the following sequence P13 ⇒
P14 ⇒ P24. Moreover, for five locations they show that the
sequence must be P13 ⇒ P14 ⇒ P15 ⇒ P25. Note that in
Figure 1 the propeller is shown in yellow and in its initial
orientation. The general result is stated in Myszka, Murray, and
Schmiedeler’s propeller theorem rewritten here as follows.

Theorem 1. A planar RR dyad will guide the moving body
through locations 1 to n, in numerical sequence, if when the
propeller is rotated π degrees about the fixed pivot G (in the
same direction that the dyad is driven in) it intersects the relative
displacement poles in the order P13 ⇒ P14 ⇒ . . . ⇒ P1n ⇒
P2n.
Corollary: If the propeller does not intersect the poles in the
order P13 ⇒ P14 ⇒ . . . ⇒ P1n ⇒ P2n then the dyad will not
guide the moving body through the locations in their numerical
sequence.

The propeller theorem and methodology are derived from
fundamental properties of crank rotation angles and relative
poles. For a dyad to guide a body through the locations in the
desired order 1, 2, 3, 4, . . . the relative crank angles βi j must
monotonically increase where βi j is the change in crank angle
from location i to location j, see Figure 2. Note that without loss
of generality we regard counter-clockwise crank rotations to be
positive so that 0 ≤ βi j ≤ 2π, ∀i, j < n and i < j. Therefore, a
dyad does not exhibit an order defect if

0 < β12 < β13 < · · ·< β1n < 2π (1)

Next, the method utilizes McCarthy’s center-point theorem
[20] to express the relationships between the fixed pivot G,
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Figure 2. PLANAR RR DYAD AND CRANK ANGLES

the relative pole Pij, and the relative crank angle βi j. The

center-point theorem states that ̸ PijGPjk = βik
2 or βik

2 + π, see
Figures 3 and 4. Using the center-point theorem n necessary
and sufficient conditions on the relative pole locations are then
derived.

0 < ̸ GP12 GP13 < ̸ GP12 GP14 < · · ·< ̸ GP12 GP1n < π

0 < ̸ GP12 GP23 < ̸ GP12 GP24 < · · ·< ̸ GP12 GP2n < π

0 < ̸ GP13 GP23 < ̸ GP13 GP34 < · · ·< ̸ GP13 GP3n < π
...

...
0 < ̸ GP1n GP2n < ̸ GP1n GP3n < · · ·< ̸ GP1n GPn-1,n < π

(2)

Equations 2 state that a dyad will guide a body through the n
locations in numerical order if for all k, starting with Pik, the
propeller intersects every pole involving location k in ascending
order.

SPHERICAL FOUR-BAR MECHANISMS
A four-bar mechanism consists of four links connected

by four revolute joints. The links of the spherical four-bar
mechanism can be represented by arcs of great circles. The links
are connected to each other by revolute joints whose four axes
intersect in a unique point; the center of the sphere of motion
or design sphere. The links of the mechanism undergo spherical
motion because the four joint axes intersect in a unique point.
A rigid-body undergoing spherical motion has three degrees of
freedom; rotations about three mutually orthogonal axes passing
through the center of the sphere. These three rotation angles
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Figure 3. THE CENTER-POINT THEOREM (Reproduced from [20])
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Figure 4. THE CENTER-POINT THEOREM WITH P12 ON THE
OPPOSITE SIDE OF G (Reproduced from [20])

define the orientation of the body with respect to the fixed
coordinate frame with origin at the center of the design sphere.
Finally, here the longitude, latitude and roll angles [21] are used
to define orientations of the moving body.

A spherical four-bar mechanism as shown in Figure 5 can
be viewed as a combination of two spherical RR dyads, a driving
dyad and a driven dyad. The driving fixed joint axis O and
the driving moving axis A constitute the driving dyad whereas
the driven fixed joint axis C and the driven moving axis B
comprise the driven dyad. The link lengths of the mechanism
are the driving link α, the driven link β, the coupler η and the
ground or fixed link γ respectively. Often the two RR dyads

3 Copyright c⃝ 2010 by ASME



α

γ

β

η

O

A

B

C

Figure 5. SPHERICAL FOUR-BAR MECHANISM

are synthesized separately and then their floating links are joined
to form a coupler to yield a closed spherical kinematic chain.
Recall that Filemon [12] showed that the order defects of a four-
bar mechanism are independent of the driven dyad hence only
the driving dyad of the spherical four-bar mechanism need be
considered when performing an order analysis.

THE HOOP METHOD
Here we extend the planar propeller method of Myszka,

Murray, and Schmiedeler [9, 10] to spherical RR dyads. The
hoop method is a novel methodology for orientation order
analysis for spherical RR dyads performing rigid-body guidance.
The methodology utilizes relative crank angles and relative
displacement axes of rotation to check the order of finitely
separated planar locations associated with a prescribed fixed axis
G of a spherical RR dyad.

The derivation of the hoop method is a direct and straight-
forward spherical generalization of the derivation of the propeller
method. The major steps in the derivation will be summarized
here and the spherical nuances will be discussed in detail. Just as
in the case of the planar propeller theorem and methodology, the
spherical hoop method is derived from fundamental properties
of crank rotation angles and relative axes of rotation. Moreover,
McCarthy’s spherical generalization of the center-point theorem,
called the center-axis theorem [20], is utilized to yield necessary
and sufficient conditions on the locations of the axes of rotation.

The planar geometric entities in the propeller method and
their spherical analogs in the hoop method are summarized in
Table 1. A point in the plane, e.g. the fixed axis G, corresponds
in the spherical case to a line along the revolute joint’s axis that
passes through the center of the design sphere. Note that this
line intersects the design sphere in two points, see Figure 6.

In the hoop method this ambiguity is resolved by utilizing the
intersection that correlates to the physical location of the joint
that connects the fixed and moving links.

We proceed as in the case of planar RR dyad order analysis
and note that Equation 1 applies to spherical RR dyads as well.
Next, the center-axis theorem of McCarthy [20] expresses the
geometric relationships between the fixed axis G, the relative
rotation axis Sij and the relative crank angle βi j for a spherical
RR dyad that guides a moving body through orientations Mi,
Mj, and Mk. The center-axis theorem states that ̸ SijGSjk =
βik
2 or βik

2 + π, see Figure 7. Using the center-axis theorem
n necessary and sufficient conditions on the locations of the
relative axes of rotation are derived per the planar case presented
in [10].

0 < ̸ GS12 GS13 < ̸ GS12 GS14 < · · ·< ̸ GS12 GS1n < π

0 < ̸ GS12 GS23 < ̸ GS12 GS24 < · · ·< ̸ GS12 GS2n < π

0 < ̸ GS13 GS23 < ̸ GS13 GS34 < · · ·< ̸ GS13 GS3n < π
...

...
0 < ̸ GS1n GS2n < ̸ GS1n GS3n < · · ·< ̸ GS1n GSn-1,n < π

(3)

Equations 3 state that a spherical RR dyad will guide a body
through the n orientations in numerical order if for all k, starting
with Sik, the hoop intersects every relative rotation axis involv-
ing orientation k in ascending order. This result is summarized
in the following hoop theorem.

Theorem 2. A spherical RR dyad will guide the moving body
through orientations 1 to n, in numerical sequence, if when the
hoop is rotated π degrees about the fixed axis G (in the same
direction that the dyad is driven in) it intersects the relative axes
of rotation in the order S13 ⇒ S14 ⇒ . . .⇒ S1n ⇒ S2n.
Corollary: If the hoop does not intersect the rotation axes in
the order S13 ⇒ S14 ⇒ . . . ⇒ S1n ⇒ S2n then the dyad will
not guide the moving body through the orientations in their
numerical sequence.

For a given spherical RR dyad with fixed axis G and a set
of n desired orientations the hoop method is implemented as
follows. First a great circle on the design sphere, referred to as
the hoop, is defined. The hoop initially passes through the fixed
axis G and the relative rotation axis S12 and is then rotated in
a counter-clockwise or clockwise direction (corresponding to the
direction of motion of the physical dyad) for π radians. The order
in which the dyad guides the moving body through the desired
orientations is established by tracking the sequence in which the
hoop intersects the relative axes of rotation associated with the n
desired orientations. Note that the hoop will intersect the relative
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PLANAR PROPELLER METHOD SPHERICAL HOOP METHOD

Fixed Pivot G (point) Fixed Axis G (line)

Relative Pole P12 (point) Relative Axis of Rotation S12 (line)

Propeller (line) Hoop (great circle)

Table 1. PLANAR AND SPHERICAL CORRESPONDENCES
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Figure 6. THE HOOP, FIXED AXIS G, ROTATION AXIS S, AND THE
DESIGN SPHERE

rotation axes on both sides of the design sphere simultaneously.
Furthermore, for the dyad to guide the moving body through
four orientations in numerical sequence the hoop must intersect
the relative rotation axes in the sequence S13 ⇒ S14 ⇒ S24.
Moreover, for five orientations the sequence must be S13 ⇒
S14 ⇒ S15 ⇒ S25. Note that in Figures 10, 12, and 13 the hoop
is shown in yellow and in its initial orientation.

HOOP METHOD FLOWCHART
Given a spherical RR dyad that guides a rigid body through

n orientations the task is to determine if the dyad guides the body
through the orientations in the desired order (i.e. 1, 2, 3, 4 ....) or

not. First, determine the
(

n
2

)
(i.e. n choose 2) relative rotation

axes associated with the n orientations. Next, generate the design
sphere with fixed axis G, the relative rotation axes, and the hoop
in its initial orientation. Proceed by rotating the hoop about G
in the same direction that the dyad is to be actuated and record
the sequence in which the hoop intersects the relative rotation
axes. Finally the hoop theorem is used to analyze the sequence

Figure 7. THE CENTER-AXIS THEOREM (Figure from [20])

to determine if the orientations will be reached in the desired
order. See Figure 8 for a flow-chart representation of the hoop
methodology.

CASE STUDY #1
Consider five orientations defined by the four euler param-

eters x1, x2, x3, and x4 listed in Table 2 and the fixed axis G
= (0.054261,−0.996977,0.055603) of a spherical RR dyad that
solves the motion generation problem presented by Brunnthaler,
Schröcker, and Husty [22]. In Figure 9 the five orientations M1,
M2, M3, M4, M5 and the fixed axis G are shown on the design
sphere. The next step is to determine the 10 relative rotation
axes S associated with the spherical orientations. The hoop, a
great circle on the design sphere passing through G and S12 is
generated, see Figure 10. Next, as the hoop is rotated π radians in
the counter-clockwise direction about G the sequence in which
it intersects the relative rotation axes is noted. As the hoop is
rotated in counter-clockwise turn of π radians about the fixed axis
G, starting from the rotation axis S12, it intersects the remaining
rotation axes in the order S23 ⇒ S45 ⇒ S25 ⇒ S13 ⇒ S24 ⇒
S15 ⇒ S14 ⇒ S35 ⇒ S34. The order indicates, per the hoop
theorem, that this RR dyad will not guide the moving body
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Figure 8. FLOW CHART FOR THE ORDER ANALYSIS OF SPHERICAL
RR DYADS

Table 2. CASE STUDIES 1 and 2- FIVE ORIENTATIONS

No. x0 x1 x2 x3

M1 1.0 0.0 0.0 0.0

M2 0.37721 0.82336 0.38967 0.16722

M3 0.0078934 0.041131 0.085164 -0.99549

M4 0.039457 0.77456 -0.60494 -0.18041

M5 -0.30301 -0.36492 0.85697 0.20157

through the spherical orientations in their numerical sequence.
Hence this dyad suffers from an order defect.

CASE STUDY #2
Here, we again consider the same five orientation problem

with another solution spherical dyad presented in [22]. The
fixed axis G = (−0.349442,−0.144163,0.925801) of another
spherical RR dyad that solves the motion generation problem

Figure 9. FIVE SPHERICAL ORIENTATIONS WITH THE FIXED AXIS
G

is now analyzed. We proceed as before and apply the hoop
methodology. In Figure 11 the five orientations, the fixed axis G,
and the relative rotation axes are shown on the design sphere. As
the hoop is rotated clockwise turn of π radians about G, starting
from S12 (see Figure 12), it intersects the remaining rotation
axes in the order S35 ⇒ S13 ⇒ S45 ⇒ S14 ⇒ S23 ⇒ S15 ⇒
S24 ⇒ S34 ⇒ S25. The order indicates, per the hoop theorem,
that this RR dyad will guide the moving body through the
spherical orientations in their numerical sequence. Note that the
hoop theorem requires that the rotation axes S13,S14,S15,S25
must be intersected in the order: S13 ⇒ S14 ⇒ S15 ⇒ S25.
That is to say the intersections with the other rotation axes are
irrelevant when applying the hoop theorem. Hence this dyad
does not suffer from an order defect.

CASE STUDY #3
Consider the four orientations M1, M2, M3, M4 shown

in Table 3 and the fixed axis G=(0.0742,0.7117,0.6986) of a
spherical RR dyad that solves this motion generation problem.
Here the actuated crank rotation is in the clockwise direction so
the hoop is also rotated in a clockwise turn of π radians about
the fixed axis G, see Figure 13. The hoop intersects the relative
rotation axes in the sequence S23 ⇒ S13 ⇒ S34 ⇒ S14 ⇒ S24.
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Figure 10. THE HOOP THROUGH FIXED AXIS G AND THE
ROTATION AXIS S12

Table 3. CASE STUDY 3- FOUR ORIENTATIONS

No. Longitude Latitude Roll

M1 -80.0 80.0 40.0

M2 20.0 60.0 124.0

M3 60.0 -80.0 45.0

M4 -80.0 80.0 5.0

Using the hoop theorem we conclude that this spherical RR dyad
does not suffer from an order defect.

CONCLUSIONS
A novel methodology for orientation order analysis of spher-

ical RR dyads has been presented. The methodology is a
spherical generalization of the recent works of Myszka, Murray,
and Schmiedeler for assessing position order of planar RR dyads.

The prior works on the order analysis of planar RR dyads
via the propeller method were briefly reviewed. Next, the
planar propeller approach was extended to yield a spherical hoop

Figure 11. FIVE ORIENTATIONS WITH THE FIXED AXIS G

Figure 12. THE HOOP ON THE DESIGN SPHERE
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Figure 13. THE HOOP, ORIENTATIONS, ROTATION AXES, AND FIXED
AXIS ON THE DESIGN SPHERE

methodology. The hoop is a great circle on the design sphere
that intersects the fixed axis of the spherical RR dyad. The hoop
method involves rotating the hoop about the fixed axis and noting
the order in which the relative rotation axes are encountered.
This method was shown to be useful for performing the order
analysis of spherical RR dyads. Finally, the utility of the hoop
method was demonstrated in three case studies. A MATLAB
implementation of the hoop method for the orientation order
analysis of spherical RR dyads is available upon request.
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