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In this paper, we present a novel methodology for orientation order
analysis of spherical RR dyads. The methodology is a spherical gen-
eralization of the recent works of Myszka, Murray, and Schmiedeler
for assessing position order of planar RR dyads. The objective of
the methodology is to determine if a prescribed fixed axis location
for a spherical RR dyad will result in the dyad guiding a moving
rigid-body through a set of finitely separated spherical orientations
in the desired order (e.g., 1, 2, 3, 4, etc.). The planar propeller meth-
odology of Myszka, Murray, and Schmiedeler is extended to yield a
spherical hoop methodology. The result is a useful tool to determine
if a given spherical RR dyad will guide a moving body through a set
of prescribed orientations in the desired order. Finally, we demon-
strate the utility of the hoop method for order analysis of spherical
RR dyads in two case studies. [DOI: 10.1115/1.4004898]
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Introduction

The objective of this effort is to devise a methodology to deter-
mine whether a given prescribed fixed axis of a spherical RR dyad
guides a rigid-body through n desired spherical orientations in the
desired order (1, 2, 3, 4, …). The motivation derives from com-
monly encountered kinematic dimensional synthesis challenges. A
common mechanism or linkage design objective is the dimensional
synthesis to solve rigid-body guidance tasks [1]; also known as
motion generation tasks [2]. In such cases the objective is to deter-
mine the geometric parameters that define the mechanism such that
the mechanism guides a moving body through a sequence of
finitely separated locations in a desired order. Often kinematic syn-
thesis algorithms for motion generation tasks yield large sets of
candidate solutions that must be analyzed for motion defects; see
SYNTHETICA by Su et al. [3], LINCAGES by Erdman [4], SPHINX
by Larochelle et al. [5], and SPHINX-PC by Ruth and McCarthy
[6]. Common motion defects encountered when using such soft-
ware tools include order, circuit, and branch defects [7]. In a one
degree of freedom mechanism, such as planar and spherical four-
bars, the mechanism suffers from an order defect when unidirec-
tional motion of the input or driving link does not guide the moving
body through the prescribed locations in the desired order. Here,
we present a novel hoop method for analyzing spherical RR dyads
and four-bar mechanisms for order defects. The hoop method [8] is
derived from the propeller method; an earlier work done on the
order analysis of planar mechanisms by Myszka et al. [9,10].

Subsequent to Chase and Mirth’s work on defining and classify-
ing motion defects [7], Balli and Chand [11] provided a compre-
hensive overview of linkage defects i.e., order, branch, and circuit
defects. Filemon [12] presents graphical construction techniques

for four position synthesis that identify regions of the design solu-
tion space that are free from order and circuit defects. Moreover,
Filemon showed that in the case of four-bar mechanisms order
defects are directly related to the driving (or input) dyad and are
independent of the driven (or output) dyad. Hence the spherical
RR dyad order analysis methodology presented here is directly ap-
plicable to the order analysis of spherical four-bar mechanisms.
Additional works examining the order analysis for both planar
and spherical mechanisms can be found in Refs. [13–19].

Recently Myszka et al. [9,10] presented a new approach to
determine whether a planar RR dyad will guide a moving body
through a set of finitely separated positions in the desired order.
Their methodology, the propeller method, utilizes relative crank
angles and relative displacement poles to check the order of
finitely separated planar locations associated with a prescribed
fixed pivot G of a planar RR dyad. Here their work on order anal-
ysis of planar mechanisms is extended to spherical mechanisms,
and we introduce the hoop method. For a given set of finitely sep-
arated spherical orientations and a spherical RR dyad with fixed
axis G the hoop method utilizes the relative displacement axes of
rotation to analyze the dyad for order defects.

Spherical Four-Bar Mechanisms

A four-bar mechanism consists of four links connected by four
revolute joints. The links of the spherical four-bar mechanism can be
represented by arcs of great circles. The links are connected to each
other by revolute joints whose four axes intersect in a unique point;
the center of the sphere of motion or design sphere. The links of the
mechanism undergo spherical motion because the four joint axes
intersect in a unique point [20]. A rigid-body undergoing spherical
motion has three degrees of freedom; rotations about three mutually
orthogonal axes passing through the center of the sphere. These three
rotation angles define the orientation of the body with respect to the
fixed coordinate frame with origin at the center of the design sphere.

A spherical four-bar mechanism as shown in Fig. 1 can be
viewed as a combination of two spherical RR dyads, a driving
dyad and a driven dyad. The driving fixed joint axis O and the
driving moving axis A constitute the driving dyad whereas the
driven fixed joint axis C and the driven moving axis B comprise
the driven dyad. The link lengths of the mechanism are the driving
link a, the driven link b, the coupler g, and the ground or fixed
link c, respectively. Often the two RR dyads are synthesized sepa-
rately and then their floating links are joined to form a coupler to
yield a closed spherical kinematic chain.

The Hoop Method

Here, we extend the planar propeller method of Myszkaet al. [9,10]
to spherical RR dyads. The hoop method is a novel methodology for
orientation order analysis for spherical RR dyads performing rigid-
body guidance. The methodology utilizes relative crank angles and
relative displacement axes of rotation to check the order of finitely
separated planar locations associated with a prescribed fixed axis G
of a spherical RR dyad. Note that this axis intersects the design sphere
in two points, see Fig. 2. In the hoop method this ambiguity is
resolved by utilizing the intersection that correlates to the physical
location of the joint that connects the fixed and moving links.

The derivation of the hoop method is a spherical generalization of
the derivation of the propeller method. The major steps in the deriva-
tion will be summarized here and the spherical nuances will be dis-
cussed in detail. Just as in the case of the planar propeller theorem and
methodology, the spherical hoop method is derived from fundamental
properties of crank rotation angles and relative axes of rotation. More-
over, McCarthy’s spherical generalization of the center-point theorem,
called the center-axis theorem [21], is utilized to yield necessary and
sufficient conditions on the locations of the axes of rotation.

The hoop theorem and methodology are derived from funda-
mental properties of crank rotation angles and relative rotation
axes. For a dyad to guide a body through the orientations in the
desired order (1, 2, 3, 4, …) the relative crank angles bij must
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monotonically increase where bij is the change in crank angle
from location i to location j. Note that without loss of generality,
we regard counter-clockwise crank rotations to be positive so that
0 � bij � 2p, 8i; j < n, and i < j. Therefore, a dyad does not ex-
hibit an order defect if

0 < b12 < b13 < � � � < b1n < 2p (1)

Next, the center-axis theorem of McCarthy [21] expresses the
geometric relationships between the fixed axis G, the relative rota-
tion axis Sij, and the relative crank angle bij for a spherical RR
dyad that guides a moving body through orientations Mi, Mj, and

Mk. The center-axis theorem states that ffSijGSjk ¼ bik

2
or

bik

2
þp.

Using the center-axis theorem n necessary and sufficient condi-
tions on the locations of the relative axes of rotation are derived
per the planar case presented in Ref. [10].

0 < ffGS12GS13 < ffGS12GS14 < � � � < ffGS12GS1n < p

0 < ffGS12GS23 < ffGS12GS24 < � � � < ffGS12GS2n < p

0 < ffGS13GS23 < ffGS13GS34 < � � � < ffGS13GS3n < p

..

.

0 < ffGS1nGS2n < ffGS1nGS3n < � � � < ffGS1nGSn�1;n < p

(2)

Equation (2) states that a spherical RR dyad will guide a body
through the n orientations in numerical order if for all k, starting
with Sik, the hoop intersects every relative rotation axis involving
orientation k in ascending order. This result is summarized in the
following hoop theorem.

Theorem 1. A spherical RR dyad will guide the moving body
through orientations 1 to n, in numerical sequence, if when the
hoop, initially passing through S12, is rotated 180 deg about the
fixed axis G (in the same direction that the dyad is driven in) it
intersects the relative axes of rotation in the order S13 )
S14 )…) S1n ) S2n.

Corollary. If the hoop does not intersect the rotation axes in the
order S13 ) S14 )…) S1n ) S2n then the dyad will not guide
the moving body through the orientations in their numerical
sequence.

For a given spherical RR dyad with fixed axis G and a set of n
desired orientations the hoop method is implemented as follows.
First a great circle on the design sphere, referred to as the hoop, is
defined. The hoop initially passes through the fixed axis G and the
relative rotation axis S12 and is then rotated in a counter-
clockwise or clockwise direction (corresponding to the direction
of motion of the physical dyad) for p radians. The order in which
the dyad guides the moving body through the desired orientations
is established by tracking the sequence in which the hoop inter-
sects the relative axes of rotation associated with the n desired ori-
entations. Note that the hoop will intersect the relative rotation
axes on both sides of the design sphere simultaneously. Further-
more, for the dyad to guide the moving body through four orienta-
tions in numerical sequence the hoop must intersect the relative
rotation axes in the sequence S13 ) S14 ) S24. Moreover, for
five orientations the sequence must be S13 ) S14 ) S15 ) S25.
Note that in Figs. 4 and 6 the hoop is shown in yellow and in its
initial orientation.

As an alternative to visually representing the hoop to determine
the order in which it intersects the relative rotation axes an ana-
lytic formulation of the relevant spherical trigonometry may be
used. Consider the relative rotation axis Sij. The angle that the
hoop must be rotated to intersect this rotation axis is equal to the
interior angle at the vertex G of the spherical triangle GS12Sij.
Hence the order that the hoop intersects the relative rotation axes
may be determined by computing each individual hoop rotation
angle. The method proceeds as follows:

(1) Determine the direction of hoop rotation.
(2) Let n be a unit normal to the plane spanned by G and S12 in

the direction determined in step 1.

n ¼ G� S12

kG� S12k
or

S12 �G

kG� S12k

(3) Let dij be the interior angle at G of the spherical triangle
GS12Sij where Sij � n � 0. If Sij � n < 0 then let Sij =� Sij.
This assures that all rotation axes intersections are analyzed
in the hemisphere associated with n.

(4) Using the spherical law of cosines [20] determine dij.

cosðdijÞ ¼
cosðcÞ � cosðaÞ cosðbÞ

sinðaÞ sinðbÞ

where cos(a)¼G � S12, cos(b)¼G �Sij, and cos(c)¼ Sij �S12.
(5) The angles dij reveal the order in which the hoop intersects

the relative rotation axes.

Hoop Method Implementation

Given a spherical RR dyad that guides a rigid-body through n
orientations the task is to determine if the dyad guides the body
through the orientations in the desired order (i.e., 1, 2, 3, 4,....) or

not. First, determine the
n
2

� �
(i.e., n choose 2) relative rotationFig. 2 The hoop, fixed axis G, rotation axis S, and the design

sphere

Fig. 1 Spherical four-bar mechanism
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axes associated with the n orientations. Next, generate the design
sphere with fixed axis G, the relative rotation axes, and the hoop
in its initial orientation. Proceed by rotating the hoop about G in
the same direction that the dyad is to be actuated and record the
sequence in which the hoop intersects the relative rotation axes or
use the spherical trigonometric formulation to analytically deter-
mine the intersection sequence. Finally, the hoop theorem is used
to analyze the sequence to determine if the orientations will be
reached in the desired order.

Case Study #1

Consider five orientations defined by the four Euler parameters
x1, x2, x3, and x4 listed in Table 1 and the fixed axis G¼
(0.054261,� 0.996977, and 0.055603) of a spherical RR dyad that
solves the motion generation problem presented by Brunnthaler
et al. [22].

In Fig. 3 the five orientations M1, M2, M3, M4, and M5 and the
fixed axis G are shown on the design sphere. The next step is to
determine the 10 relative rotation axes S associated with the
spherical orientations. The hoop, a great circle on the design
sphere passing through G and S12 is generated, see Fig. 4. Next,
as the hoop is rotated the sequence in which it intersects the rela-
tive rotation axes is noted.

As the hoop is rotated in counter-clockwise turn of p radians
about the fixed axis G, starting from the rotation axis S12, it inter-
sects the remaining rotation axes in the order S23 25:9ð Þ )
S45 45:4ð Þ ) S25 74:1ð Þ ) S13 80:2ð Þ ) S24 96:1ð Þ ) S15 129:4ð Þ )
S14 151:3ð Þ ) S35 154:1ð Þ ) S34 175:7ð Þ. The hoop rotation angles
(degrees), determined analytically for each intersection, have
been included in parentheses. The hoop theorem requires that the
rotation axes must be intersected in the following order:
S13) S14) S15) S25. Note that the hoop’s intersections with
the other five rotation axes are irrelevant when applying the hoop

theorem for five orientations. The order indicates, per the hoop
theorem, that this RR dyad will not guide the moving body
through the spherical orientations in their numerical sequence.
Hence this dyad suffers from an order defect.

Case Study #2

Here, we again consider the same five orientation problem with
another solution spherical dyad presented in Ref. [22]. The fixed
axis G¼ (�0.349442,� 0.144163, and 0.925801) of another
spherical RR dyad that solves the motion generation problem is
now analyzed. We proceed as before and apply the hoop method-
ology. In Fig. 5 the five orientations, the fixed axis G, and the rela-
tive rotation axes are shown on the design sphere.

As the hoop is rotated clockwise turn of p radians about G,
starting from S12 (see Fig. 6), it intersects the remaining rotation
axes in the order S35 1:30ð Þ ) S13 14:4ð Þ ) S45 51:4ð Þ ) S14

68:9ð Þ ) S23 83:5ð Þ ) S15 97:0ð Þ ) S24 134:4ð Þ ) S34 152:5ð Þ )

Table 1 Five prescribed orientations

Nos. x0 x1 x2 X3

M1 1.0 0.0 0.0 0.0
M2 0.37721 0.82336 0.38967 0.16722
M3 0.0078934 0.041131 0.085164 �0.99549
M4 0.039457 0.77456 �0.60494 �0.18041
M5 �0.30301 �0.36492 0.85697 0.20157

Fig. 3 Five spherical orientations with the fixed axis G

Fig. 4 The hoop through fixed axis G and the rotation axis S12

Fig. 5 Five orientations with the fixed axis G
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S25 162:5ð Þ. The hoop rotation angles (degrees), determined ana-
lytically for each intersection, are included in parentheses. The
order indicates, per the hoop theorem, which this RR dyad will
guide the moving body through the spherical orientations in their
numerical sequence. Hence this dyad does not suffer from an
order defect.

Conclusions

A novel methodology for orientation order analysis of spherical
RR dyads has been presented. The prior work on the order analy-
sis of planar RR dyads via the propeller method was extended to
yield a spherical hoop methodology. The hoop is a great circle on
the design sphere that intersects the fixed axis of the spherical RR
dyad. The hoop method involves rotating the hoop about the fixed
axis and noting the order in which the relative rotation axes are
encountered. This method was shown to be useful for performing
the order analysis of spherical RR dyads. Finally, the utility of the
hoop method was demonstrated in two case studies.
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